

Redline Breakers Trouble Shooting

TROUBLE	PROBABLE CAUSE	REMEDY
Breaker will not start	Plugged exhaust port or air passages caused by dirt or hose particles.	Dismantle breaker and clean out all ports and air passages. Keep the air hose in top notch condition; never use a soft deteriorated hose.
	Stuck valve due to gummy oil or incorrect assembly.	Remove valve chest parts from the breaker. Clean parts. Never use dirty oil or oil that does not conform to the recommended specifications
	Frozen piston due to improper lubrication.	3. Dismantle breaker to remove piston. Repair piston by placing in a high speed lathe and dressing with fine emery cloth. Never run breaker without the proper lubricating oil in the lubricating oil reservoir.
Breaker loses power rapidly	1. Restriction in air supply line.	Never allow the air supply to kink or make sharp bends.
	2. Air supply line too long.	2. As a general rule keep the air supply line under 49 feet. (15 m)
	3. Diameter of air supply line too small.	3. A 3/4 in. (19.1mm) diameter air supply is recommended for the breaker.
Breaker lacks power	1. Low air supply pressure.	1. The air supply pressure at the tool should be 80 to 90 psi
	2. Running on fronthead cushion.	2. Keep shank fed-up to the work. Always maintain a constant pressure when operating the breaker.
	3. Plugged air passages.	3. Dismantle the breaker and clean out all ports
	4. Lack of lubricating oil.	and passages. 4. Maintain the proper oil level in the lubricating oil reservoir. Steel shank must show a film of oil.
Overheating of the cylinder on a new machine.	Breaker not properly broken in.	Stop operating the breaker and perform initial servicing. Never run a new breaker at full throttle until a proper break-in period has been completed.
Overheating of breaker after break-in period	1. Running on fronthead cushion.	Keep shank fed-up to work. Always maintain constant pressure when operating the breaker.
	2. Piston not hitting the shank because of	2. Remove shank from breaker.
	short shank.	3. When pulling steels always use minimum throttle.
	3. Pulling steel at full throttle.	4. Before operating the breaker make sure the lubricating oil reservoir is full of proper lubricant.
2	4. Lack of lubrication or improper lubricating oil.	
Erratic or sluggish operation	1. Lubricating oil too heavy, slowing	1. Use only the recommended lubricating oil.
NO.	down valve action. 2. Gummed oil or dirt in operating parts.	Dismantle breaker and clean out dirt and gummy residue. Service the breaker with clean oil. Protect tool from dirt when idle.
Freezing at exhaust ports	Excessive moisture in the air supply line. (Usually occurs in low ambient temperatures.)	Install moisture traps in the air supply line or add antifreeze lubricant directly through the air inlet. Use "KILFROST" antifreeze lubricant or equivalent.
Fogging	Excessive moisture in the air supply line.	Blow out air lines. If moisture traps are installed in the air supply line, drain the moisture.
	2. Over lubrication.	Clean lubricating oil reservoir and adjust for proper rate of feed.

Redline Rock Drills Trouble Shooting Page 1 of 2

TROUBLE	PROBABLE CAUSE	REMEDY
Still will not start	Plugged exhaust ports; valve stuck with gummy	Dismantle drill and clean out all ports and passages;
	oil; drill flooded with oil; plugged air filter or air	clean air filters and strainers. If due to frozen
	passages caused by dirt or hose particles; stuck	piston, repair by stoning or use fine emery cloth.
	piston due to improper lubrication; side rods	Replace deteriorated hose. Make sure drill is
	tightened unevenly, causing binding.	properly assembled and lubricated.
Still loses power rapidly	Restriction in supply line; air hose too long or	Check supply line for kinks or sharp bends. Keep
	too small in diameter.	hoses short as possible, large enough for drill.
Still lacks power	Low air pressure; short shank or short piston	Check shanks and piston. Check front head
	(because of wear or regrinding); plugged air	cushion. Check for plugged passages; clean filters
	passages or plugged air filters; lack of oil.	or strainers. Air pressure should be set at 80-90 psi
		at the drill. Check line oiler for proper rate of feed-
		steel shanks should be wet with oil.
Still does not rotate or weak	Bad drilling ground; ravelly, fitchery, clay seams,	Replace worn bits. Replace or repair any worn
rotation	bug holes, etc. Loss of big gauge causing binding	parts.
	in hole. Worn rotation parts: rifle nut, rifle bar,	
	pawls or ratchet ring, chuck, chuck nut, or any	
	combination of above.	
Overheating	New machines may overheat at buffer ring.	Run new drills at less than full throttle until broken
		in; use plenty of the proper type of oil.
Overheating	Running on front head cushion: piston not hitting	Keep machine fed up to work; don't use steels with
	steel shank because of short shank, or because	short shanks. Use as little throttle as possible
	machine not kept fed up to work. Also caused by	when pulling steels. Keep drill lubricated with
	pulling steels at full throttle; wrong type of oil;	correct oil, use a line oiler with each drill; check for
	hot air from compressor.	presence of oil on steel shank while operating.
Low drilling speed	Cuttings not being removed from hole; low air	Use blow air frequently to keep hole clean, avoid
	pressure; plugged drill steel or air tube; drill not	crowding drill. Clean out drill steel or air tube.
	aligned with hole, steel or bit binding in hole.	Check alignment while drilling to prevent binding
		and to avoid stuck steel.
Erratic or sluggish operation	Oil too heavy, slowing down valve action;	Use oil of proper viscosity for class of drill and
	gummed oil or dirt in operating parts.	operating temperature. Dismantle drill and clean
		out dirt and gummy residues. Service drill with
		clean oil. Protect drill from dirt when idle.
Stuck steel	Driving steel after bit is dull or has lost its gauge;	Don't force a dull bit-sharpen or use new bit. Use
	crowding in soft formations; cuttings not being	feed pressure cautiously in soft ground; blow the
	blown from hole; misalignment of steel with	hole frequently. Keep steel and drill aligned with
	hole, causing binding.	hole at all times.
Rapid wear of rifle nut and or	Most often caused by inadequate lubrication, with	Keep the machine clean and use sufficient oil of
rifle bar.	dirt a contributing factor.	correct viscosity. Replace worn parts promptly.
Chipping or breakage of piston	Can be caused by bad shank which is too hard,	Take bad shanks out of service-one bad shank can
	rounded off allowing minimum contact with	ruin many pistons. Replace worn chucks-use wear
	piston striking face. Also caused by worn chuck	gauge to determine when chuck should be replaced.
40 ,	permitting steel to cock in chuck and piston	Keep machine well lubricated with proper type of
0,	strikes shank a glancing blow. Often caused by	oil. Check cylinder, piston, buffer ring for
	heat cracking due to faulty lubrication. Failure in	maximum wear tolerances.
	neck of piston due to loss of front head cushion,	
	piston striking buffer ring.	
Stalling of shank striking	Too hard; usually caused by accumulation of water	Drain off water in quenching tank. Check
	in bottom of quenching tank.	tempering temperatures.
Bronze cuttings	Rifle bar flutings worn, cutting rifle nut. Side rods	Replace damaged parts. Keep side rods at even
	not tightened evenly, piston binding in chuck	tension. Check functioning of line oiler. Steel
	nut, rifle bar binding in rifle nut. Excessive wear	shanks should be wet with oil at all times during
	due to insufficient lubrication.	operation.
Side rod breakage	Uneven tension on rods or loose rods. Loss of	Keep side rods tight and at even tension. Tighten
C	front head cushion allowing piston to strike buffer	rods alternately. Replace worn cylinder, piston, or
	ring with hard impact.	buffer ring.

Redline Rock Drills Trouble Shooting

Page 2 of 2

Cracked or broken rifle nut and or chuck nut	Rifle nut loose in piston, chuck nut loose in chuck	Replace damaged parts. Keep nuts tight against seat in piston or chuck.
Ratchet pawl breakage	Invariably caused by operator turning drill steel in wrong direction to free stuck steel	Replace pawls, instruct operator.
Broken or battered air or water tube	Shanks improperly punched; worn chucks which permit misalignment and chafing or bending of tube.	Check shank to be sure center hole is large enough and deep enough to accept tube. Replace worn chucks.
Freezing at exhaust ports	Excessive moisture in air supply-usually occurs in low ambient temperatures.	Install moisture traps in air lines or feed small amount of anti-freeze into air supply
Fogging	Excessive moisture in air supply or over lubrication.	Blow out air lines, drain water from moisture traps, adjust line oiler for proper rate of feed.

LUBRICATION - IMPORTANT

!!

Proper lubrication is important in the maintenance and longevity of your KENT hammer.

RECOMMENDED OIL WEIGHT FOR USE

(SAE #10) For Tampers and Diggers (SAE #30) For Breakers and Rock Drills

CLIMATE INFORMATION

#10 Light weight for cold climate regions (-30 degrees F to 32 degrees F) #30 Medium weight for warm climate regions (32 degrees F to 70 degrees F) #50 Heavy weight for hot climate regions (70 degrees F to 125 degrees F)

TO PURCHASE THIS PRODUCT PLEASE CONTACT US

Equipment Financing and Extended Warranties Available

Discount-Equipment.com is your online resource for commercial and industrial quality parts and equipment sales. 561-964-4949
visit us on line @ www.discount-equipment.com

Select an option below to find your Equipment

Search by Manufacturer

Search by Product Type

Request a Quote

We sell worldwide for the brands: Genie, Terex, JLG, MultiQuip, Mikasa, Essick, Whiteman, Mayco, Toro Stone, Diamond Products, Generac Magnum, Airman, Haulotte, Barreto, Power Blanket, Nifty Lift, Atlas Copco, Chicago Pneumatic, Allmand, Miller Curber, Skyjack, Lull, Skytrak, Tsurumi, Husquvarna Target, Stow, Wacker, Sakai, Mi-T-M, Sullair, Basic, Dynapac, MBW, Weber, Bartell, Bennar Newman, Haulotte, Ditch Runner, Menegotti, Morrison, Contec, Buddy, Crown, Edco, Wyco, Bomag, Laymor, EZ Trench, Bil-Jax, F.S. Curtis, Gehl Pavers, Heli, Honda, ICS/PowerGrit, IHI, Partner, Imer, Clipper, MMD, Koshin, Rice, CH&E, General Equipment, Amida, Coleman, NAC, Gradall, Square Shooter, Kent, Stanley, Tamco, Toku, Hatz, Kohler, Robin, Wisconsin, Northrock, Oztec, Toker TK, Rol-Air, APT, Wylie, Ingersoll Rand / Doosan, Innovatech, Con X, Ammann, Mecalac, Makinex, Smith Surface Prep, Small Line, Wanco, Yanmar