- **9.** Using suitable protection, clamp the cylinder rod in a vise or similar holding fixture as close to the piston as possible.
- **10.** Loosen and remove the capscrews from drilled holes.

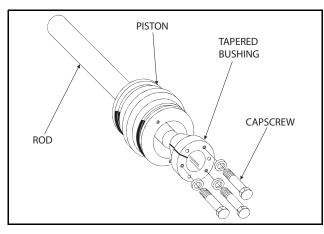


Figure 5-79. Tapered Bushing Removal

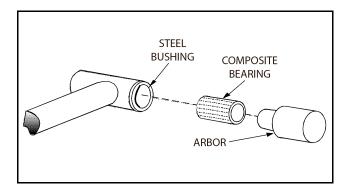
- **11.** Insert the capscrews in the threaded holes in the outerpiece of the tapered bushing. Progressively tighten thecapscrews until the bushing is loosen from the piston
- **12.** Remove the tapered bushing from the piston.
- **13.** Screw the piston counterclockwise by hand and remove the piston from cylinder rod.
- 14. Remove and discard the piston o-ring, backup rings, hydrolock seals, guidelock rings and wear ring.
- **15.** Remove the rod from the holding fixture. Remove the cylinder head gland. Discard the o-ring, backup rings, rod seal, wear ring and wiper seal.

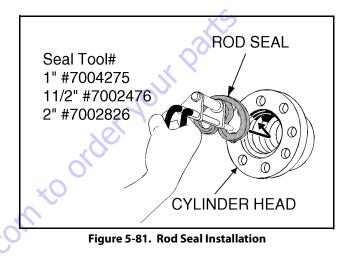
50 to Disc

CLEANING AND INSPECTION

- 1. Clean all parts thoroughly in an approved cleaning solvent.
- 2. Inspect the cylinder rod for scoring, tapering, ovality, or other damage. If necessary, dress rod with Scotch Brite or equivalent. Replace rod if necessary.
- **3.** Inspect threaded portion of rod for excessive damage. Dress threads as necessary.
- 4. Inspect inner surface of cylinder barrel tube for scoring or other damage. Check inside diameter for tapering orovality. Replace if necessary.
- **5.** Inspect threaded portion of barrel for damage. Dress threads as necessary.
- Inspect piston surface for damage and scoring and for distortion. Dress piston surface or replace piston as necessary.
- **7.** Inspect threaded portion of piston for damage. Dress threads as necessary.
- **8.** Inspect seal and o-ring grooves in piston for burrs and sharp edges. Dress applicable surfaces as necessary.
- **9.** Inspect cylinder head inside diameter for scoring, tapering, ovality or other damage. Replace as necessary.
- **10.** Inspect threaded portion of head for damage. Dress threads as necessary.
- **11.** Inspect seal and o-ring grooves in head for burrs and sharp edges. Dress applicable surfaces as necessary.
- Inspect cylinder head outside diameter for scoring, tapering, ovality or other damage. Replace as necessary.
- **13.** If applicable, inspect rod and barrel bearings for signs of correct excessive wear or damage. Replace as necessary.
 - **a.** Thoroughly clean hole, (steel bushing) of burrs, dirt etc. to facilitate bearing installation.
 - **b.** Inspect steel bushing for wear or other damage. If steel bushing is worn or damaged, rod/barrel must be replaced.
 - **c.** Lubricate inner side of the steel bushing prior to bearing installation.
 - **d.** Using an arbor of the correct size, carefully press the bearing into steel bushing.

NOTE: Install pin into the composite bearing dry. Lubrication is not required with nickel plated pins and bearings.




Figure 5-80. Composite Bearing Instal-

- **14.** Inspect port block fittings and holding valve. Replace as necessary.
- **15.** Inspect the oil ports for blockage or the presence of dirt or other foreign material. Repair as necessary.
- **16.** Inspect piston rings for cracks or other damage. Replace as necessary.

Goto Discount-Found

ASSEMBLY

- **NOTE:** Prior to cylinder assembly, ensure that the proper cylinder seal kit is used. See your JLG Parts Manual.
- **NOTE:** Apply a light film of hydraulic oil to all components prior to assembly.
 - **1.** A special tool is used to install a new rod seal into the applicable cylinder head gland groove.

NOTICE

WHEN INSTALLING NEW SEALS, ENSURE SEALS ARE INSTALLED PROPERLY. IMPROPER SEAL INSTALLATION COULD RESULT IN CYLINDER LEAKAGE AND IMPROPERCYLINDER OPERATION.

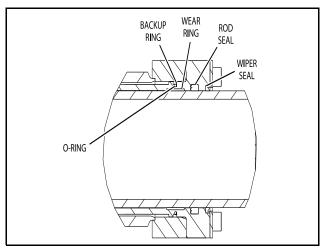


Figure 5-82. Cylinder Head Seal Installation

2. Use a soft mallet to tap a new wiper seal into the cylinder head gland groove. Install a new wear ring into the cylinder head gland groove.

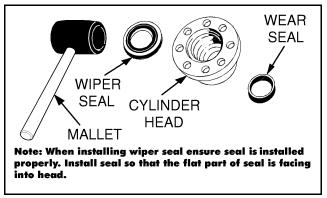


Figure 5-83. Wiper Seal Installation

3. Place a new o-ring and backup ring in the outside diameter groove of the cylinder head.

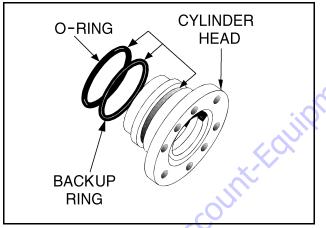


Figure 5-84. Installation of Head Seal Kit

- Install washer ring onto rod, carefully install the head gland on the rod, ensuring that the wiper and rod seals are not damaged or dislodged. Push the head along the rod to the rod end.
- **5.** Place a new o-ring and backup rings in the inner piston diameter groove.
- **6.** Using suitable protection, clamp the cylinder rod in a vise or similar holding fixture as close to the piston threads as possible.
- **7.** Carefully thread the piston on the cylinder rod hand tight, ensuring that the o-ring and backup rings are not damaged or dislodged.
- **NOTE:** When installing the tapered bushing, piston and mating end of rod must be free of oil.

8. Assemble the tapered bushing loosely into the piston and insert capscrews through the drilled holes in the bushing and into the tapped holes in the piston.

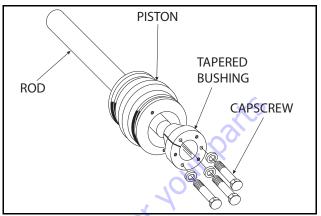


Figure 5-85. Tapered Bushing Installation

- **9.** Tighten the capscrews evenly and progressively in rotation to 60 ft. lbs. (81 Nm).
- **10.** After the screws have been torqued, tap the tapered bushing with a hammer (16 to 24 oz.) and brass shaft (approximately 3/4" in diameter) as follows;
 - **a.** Place the shaft against the cylinder rod and in contact with the bushing in the spaces between the capscrews.
 - **b.** Tap each space once; this means the tapered bushing is tapped 3 times as there are 3 spaces between the capscrews.

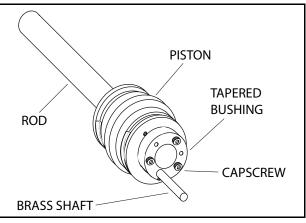


Figure 5-86. Seating the Tapered Bearing

11. Re-torque the capscrews evenly and progressively in rotation to 60 ft. lbs. (81 Nm).

12. Remove the cylinder rod from the holding fixture.

NOTICE

WHEN INSTALLING HYDROLOCK PISTON SEALS, ENSURE SEALS ARE INSTALLED PROPERLY. REFER TO HYDROLOCK PISTON SEAL INSTALLATION FOR CORRECT SEAL ORIENTATION. IMPROPER SEAL INSTALLATION COULD RESULT IN CYLINDER LEAKAGE AND IMPROPER CYLINDER OPERATION.

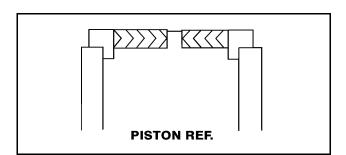


Figure 5-87. Hydrolock Piston Seal Installation

13. Place new hydrolock seals and guidelock rings in the outer piston diameter grooves. (A tube, with I.D. slightly larger than the O.D.of the piston is recommended to install the seal).

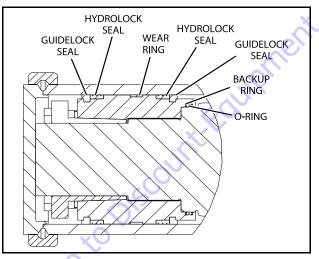


Figure 5-88. Piston Seal Installation

14. Position the cylinder barrel in a suitable holding fixture.

NOTICE

EXTREME CARE SHOULD BE TAKEN WHEN INSTALLING THE CYLINDER ROD, HEAD, AND PISTON. AVOID PULLING THE ROD OFF-CENTER, WHICH COULD CAUSE DAMAGE TO THE PISTON AND CYLINDER BARREL SURFACES.

- **15.** With barrel clamped securely, and adequately supporting the rod, insert the piston end into the barrel cylinder. ensuring that piston loading hydrolock seals and guidelock rings are not damaged or dislodged.
- **16.** Continue pushing the rod into the barrel until the cylinder head gland can be inserted into the barrel cylinder.
- Apply Medium strength Threadlocking Compound to the socket head capscrews and secure the cylinder head gland using the washer ring and capscrews. Refer Figure 5-78. to torque bolts.

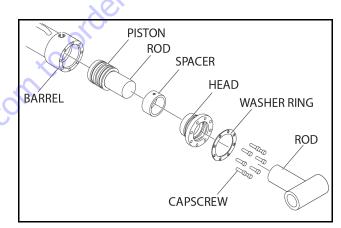


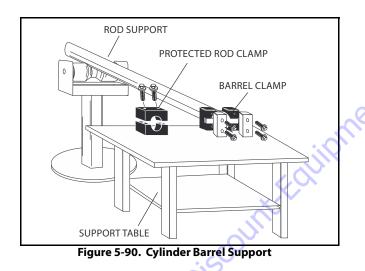
Figure 5-89. Rod Assembly Installation

- **18.** After the cylinder has been reassembled, the rod should be pushed all the way in (fully retracted) prior to the reinstallation of any valves.
- **19.** Install the valve assembly. Torque capscrews refer to Figure 5-78.
- **20.** Install the counterbalance valves in valve assembly. Torque 30-35 ft. lbs. (41-47 Nm).
- **21.** Install the shuttle valve in valve assembly. Torque 20-25 ft. lbs. (27- 33 Nm).
- **22.** Install the plug fittings in the valve assembly. Torque to plug fittings as per Figure 5-78.

Steer Cylinder

DISASSEMBLY

NOTICE


DISASSEMBLY OF THE CYLINDER SHOULD BE PERFORMED ON A CLEAN WORK SURFACE IN A DIRT FREE WORK AREA.

1. Connect a suitable auxiliary hydraulic power source to the cylinder port block fitting.

NOTICE

DO NOT FULLY EXTEND CYLINDER TO THE END OF STROKE. RETRACT CYLINDER SLIGHTLY TO AVOID TRAPPING PRESSURE.

- Operate the hydraulic power source and extend the cylinder. Shut down and disconnect the power source. Adequately support the cylinder rod, if applicable.
- 3. Place the cylinder barrel into a suitable holding fixture.

4. Mark cylinder head and barrel with a center punch for easy realignment. Using a pin-face spanner wrench, unscrew the cylinder head from the barrel., unscrew the cylinder head from the barrel.

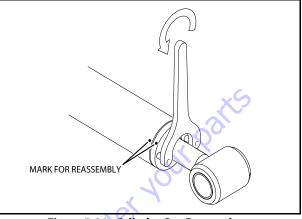


Figure 5-91. Cylinder Cap Removal

5. Attach a suitable pulling device to the cylinder rod end.

EXTREME CARE SHOULD BE TAKEN WHEN REMOVING THE CYLINDER ROD, HEAD, AND PISTON. AVOID PULLING THEROD OFF-CENTER, WHICH COULD CAUSE DAMAGE TO THE PISTON AND CYLINDER BARREL SURFACES.

6. With the barrel clamped securely, apply pressure to the rod pulling device and carefully remove the complete rod assembly from the cylinder barrel.

Figure 5-92. Cylinder Rod Support

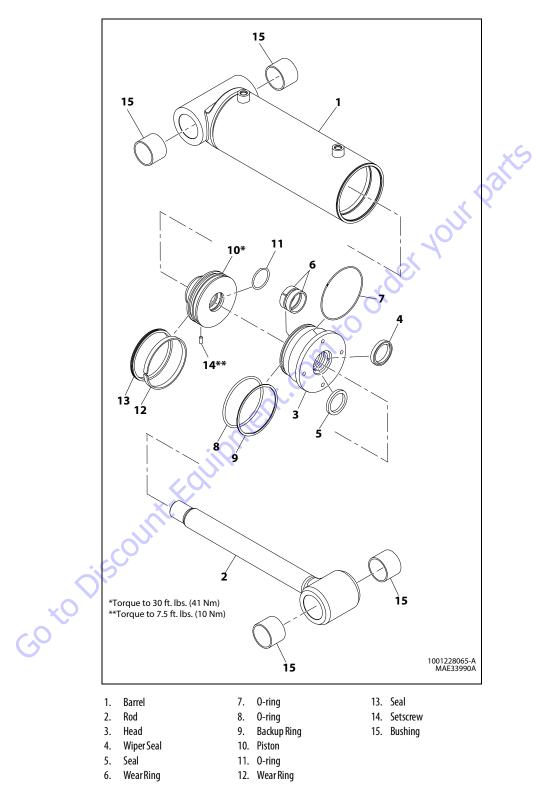


Figure 5-93. Steer Cylinder

- **7.** Using suitable protection, clamp the cylinder rod in a vise or holding fixture as close to the piston as possible.
- **8.** Loosen and remove the setscrew that secures the piston to the cylinder rod.
- **9.** Remove the piston from the cylinder rod.
- **10.** Remove and discard the o-ring, piston seal and wear ring.
- **11.** Remove the rod from the holding fixture. Remove the cylinder head. Discard wear ring, o-ring, backup ring, wiper seal and rod seal.

CLEANING AND INSPECTION

- **1.** Clean all parts thoroughly in an approved cleaning solvent.
- Inspect the cylinder rod for scoring, tapering, ovality, or other damage. If necessary, dress rod with Scotch Brite or equivalent. Replace rod if necessary.
- **3.** Inspect threaded portion of rod for excessive damage. Dress threads as necessary.
- Inspect inner surface of cylinder barrel tube for scoring or other damage. Check inside diameter for tapering or ovality. Replace if necessary.
- **5.** Inspect threaded portion of barrel for damage. Dress threads as necessary.
- Inspect piston surface for damage and scoring and for distortion. Dress piston surface or replace piston as necessary.
- 7. Inspect threaded portion of piston for damage. Dress threads as necessary.
- **8.** Inspect seal and o-ring grooves in piston for burrs and sharp edges. Dress applicable surfaces as necessary.
- **9.** Inspect cylinder head inside diameter for scoring or other damage and for ovality and tapering. Replace as necessary.
- **10.** Inspect threaded portion of head for damage. Dress threads as necessary.
- **11.** Inspect seal and o-ring grooves in head for burrs and sharp edges. Dress applicable surfaces as necessary.
- **12.** Inspect cylinder head outside diameter for scoring or other damage and ovality and tapering. Replace as necessary.

- **13.** Inspect rod and barrel bearings for signs of correct excessive wear or damage. Replace as necessary.
 - **a.** Thoroughly clean hole, (steel bushing) of burrs, dirt etc. to facilitate bearing installation.
 - **b.** Inspect steel bushing for wear or other damage. If steel bushing is worn or damaged, rod/barrel must be replaced.
 - **c.** Lubricate inside of the steel bushing prior to bearing installation.
 - **d.** Using an arbor of the correct size, carefully press the bearing into steel bushing.
- **NOTE:** Install pin into the composite bearing dry. Lubrication is not required with nickel plated pins and bearings.

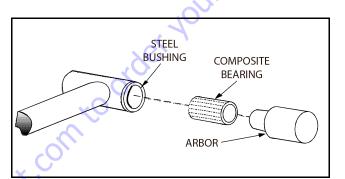


Figure 5-94. Composite Bearing Installation

- **14.** Inspect the oil ports for blockage or the presence of dirt or other foreign material. Repair as necessary.
- **15.** If applicable, inspect piston rings for cracks or other damage. Replace as necessary.

ASSEMBLY

- **NOTE:** Prior to cylinder assembly, ensure that the proper cylinder seal kit is used. See your JLG Parts Manual.
- **NOTE:** Apply a light film of hydraulic oil to all components prior to assembly.
 - **1.** A special tool is used to install a new rod seal into the applicable cylinder head gland groove.

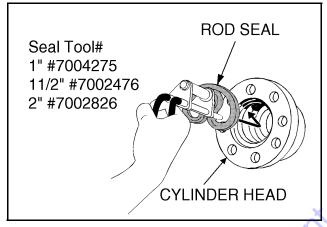


Figure 5-95. Rod Seal Installation

NOTICE

WHEN INSTALLING NEW SEALS, ENSURE SEALS AREINSTALLED PROPERLY. IMPROPER SEAL INSTALLATION COULD RESULT IN CYLINDER LEAKAGE AND IMPROPER CYLINDER OPERATION.

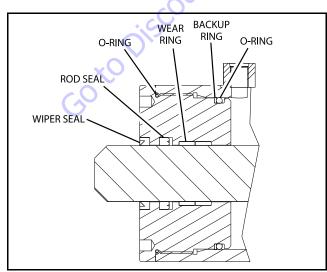


Figure 5-96. Cylinder Head Seal Installation

2. Use a soft mallet to tap a new wiper seal into the cylinder head gland groove. Install new wear rings and seal into the cylinder head gland groove.

3. Place a new o-rings and backup ring in the outside diameter groove of the cylinder head.

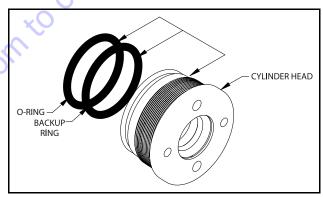


Figure 5-98. Installation of Head Seal Kit

- **4.** Carefully install the head gland on the rod, ensuring that the wiper seal, wear rings and rod seals are not damaged or dislodged. Push the head along the rod to the rod end.
- 5. Place a new o-ring n the inner piston diameter groove.
- **6.** Using suitable protection, clamp the cylinder rod in a vise or similar holding fixture as close to the piston threads as possible.
- **7.** Carefully thread the piston on the cylinder rod, ensuring that the o-ring and backup rings are not damaged or dislodged. Torque to piston 30 ft. lbs. (41 Nm).
- **8.** Carefully thread the setscrew onto the rod to secure the piston in place. Torque to 8 ft. lbs. (10 Nm).

- 9. Remove the cylinder rod from the holding fixture.
- 10. Place a new wear ring and piston seal in the outer piston diameter grooves. (A tube, with I.D. slightly larger than the O.D.of the piston is recommended to install the seal).

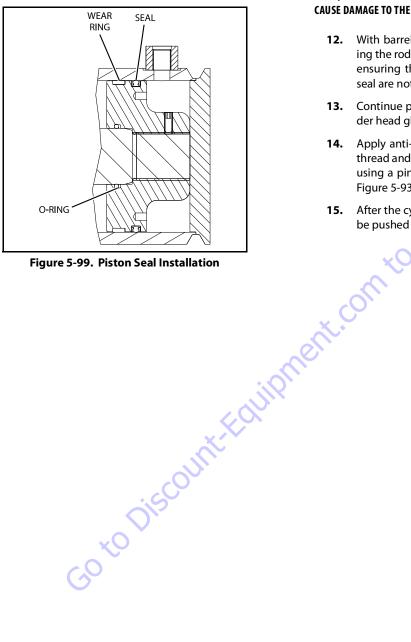


Figure 5-99. Piston Seal Installation

11. Position the cylinder barrel in a suitable holding fixture.

NOTICE

EXTREME CARE SHOULD BE TAKEN WHEN INSTALLING THE CYLINDER ROD, HEAD, AND PISTON. AVOID PULLING THE ROD OFF-CENTER, WHICH COULD CAUSE DAMAGE TO THE PISTON AND CYLINDER BARREL SURFACES.

- 12. With barrel clamped securely, and adequately supporting the rod, insert the piston end into the barrel cylinder. ensuring that the piston loading wear ring and piston seal are not damaged or dislodged.
- 13. Continue pushing the rod into the barrel until the cylinder head gland can be inserted into the barrel cylinder.
- 14. Apply anti-seized compound on cylinder head external thread and screw the cylinder head gland into the barrel using a pin-face spanner wrench. To torque gland refer Figure 5-93.
- 15. After the cylinder has been reassembled, the rod should be pushed all the way in (fully retracted).

Main Boom Telescope Cylinder

DISASSEMBLY

NOTICE

DISASSEMBLY OF THE CYLINDER SHOULD BE PERFORMED ON A CLEAN WORK SURFACE IN A DIRT FREE WORK AREA.

1. Connect a suitable auxiliary hydraulic power source to the cylinder port block fitting.

NOTICE

DO NOT FULLY EXTEND CYLINDER TO THE END OF STROKE. RETRACT CYLINDER SLIGHTLY TO AVOID TRAPPING PRESSURE.

- **2.** Operate the hydraulic power source and extend the cylinder. Shut down and disconnect the power source. Adequately support the cylinder rod, if applicable.
- Remove the check valves, counterbalance valves, and relief valve from the cylinder port block. Discard o-rings.
- **4.** Remove capscrew and remove valve assembly from cylinder rod end.
- 5. Place the cylinder barrel into a suitable holding fixture.

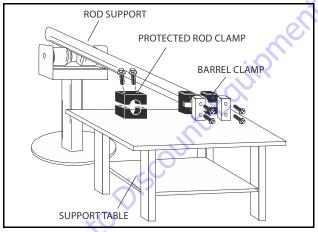
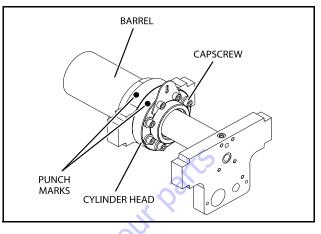



Figure 5-100. Cylinder Barrel Support

 Mark cylinder head and barrel with a center punch for easy realignment. Using an allen wrench, loosen the cylinder head retainer capscrews, and remove caspcrewa, washers and bracket from cylinder barrel.

7. Attach a suitable pulling device to the cylinder rod end.

EXTREME CARE SHOULD BE TAKEN WHEN REMOVING THE CYLINDER ROD, HEAD, AND PISTON. AVOID PULLING THE ROD OFF-CENTER, WHICH COULD CAUSE DAMAGE TO THE PISTON AND CYLINDER BARREL SURFACES.

8. With the barrel clamped securely, apply pressure to the rod pulling device and carefully remove the complete rod assembly from the cylinder barrel.

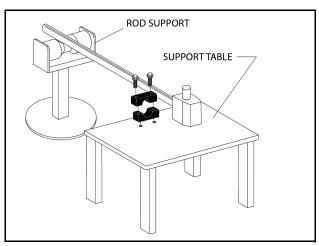


Figure 5-102. Cylinder Rod Support

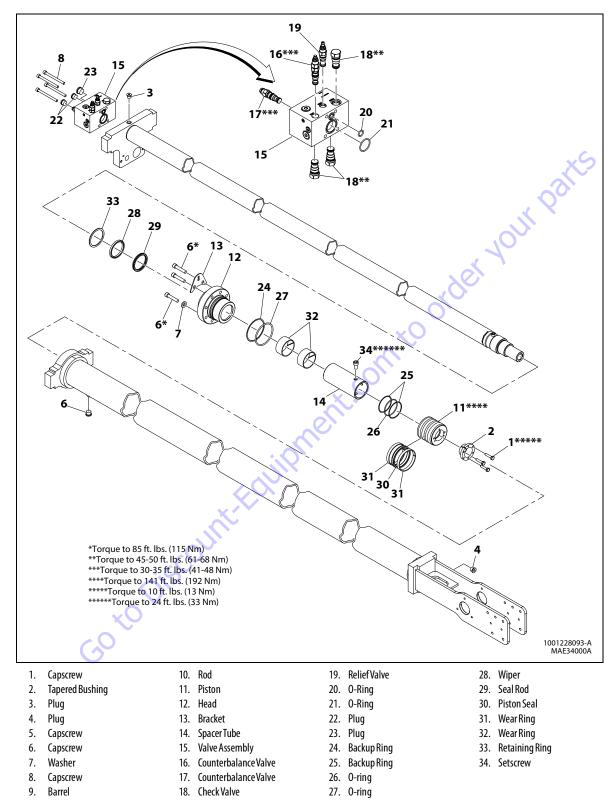


Figure 5-103. Main Boom Telescope Cylinder

- **9.** Using suitable protection, clamp the cylinder rod in a vise or holding fixture as close to the piston as possible.
- **10.** Loosen and remove the capscrews from drilled holes.

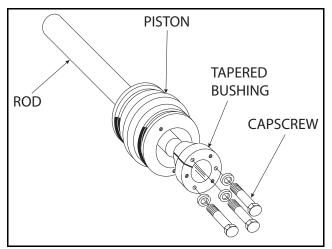


Figure 5-104. Tapered Bushing Removal

- **11.** Insert the capscrews in the threaded holes in the outer piece of the tapered bushing. Progressively tighten the capscrews until the bushing is loosen from the piston.
- **12.** Remove the tapered bushing from the piston.
- **13.** Screw the piston counterclockwise by hand and remove the piston from cylinder rod.
- **14.** Remove and discard the piston seal, wear rings, o-ring and backup rings.
- **15.** Loosen and remove capscrew from spacer, remove spacer from cylinder rod.
- **16.** Remove the rod from the holding fixture. Remove the cylinder head gland. Discard the o-ring, backup ring, rod seal, wear rings, wiper seal and retaining ring.

CLEANING AND INSPECTION

- 1. Clean all parts thoroughly in an approved cleaning solvent.
- **2.** Inspect the cylinder rod for scoring, tapering, ovality, or other damage. If necessary, dress rod with Scotch Brite or equivalent. Replace rod if necessary.
- **3.** Inspect threaded portion of rod for excessive damage. Dress threads as necessary.
- 4. Inspect inner surface of cylinder barrel tube for scoring or other damage. Check inside diameter for tapering or ovality. Replace if necessary.
- **5.** Inspect threaded portion of barrel for damage. Dress threads as necessary.
- 6. Inspect piston surface for damage and scoring and for distortion. Dress piston surface or replace piston as necessary.
- **7.** Inspect threaded portion of piston for damage. Dress threads as necessary.
- 8. Inspect seal and o-ring grooves in piston for burrs and sharp edges. Dress applicable surfaces as necessary.
- **9.** Inspect cylinder head inside diameter for scoring or other damage and for ovality and tapering. Replace as necessary.
- **10.** Inspect threaded portion of head for damage. Dress threads as necessary.
- **11.** Inspect seal and o-ring grooves in head for burrs and sharp edges. Dress applicable surfaces as necessary
- **12.** Inspect cylinder head outside diameter for scoring, tapering, ovality or other damage. Replace as necessary.
- **13.** Inspect rod and barrel bearings for signs of correct excessive wear or damage. Replace as necessary.
 - **a.** Thoroughly clean hole, (steel bushing) of burrs, dirt etc. to facilitate bearing installation.
 - **b.** Inspect steel bushing for wear or other damage. If steel bushing is worn or damaged, rod/barrel must be replaced.
 - **c.** Lubricate inner side of the steel bushing prior to bearing installation.
 - **d.** Using an arbor of the correct size, carefully press the bearing into steel bushing.
- **14.** Inspect travel limiting collar or spacer for burrs and sharp edges. If necessary, dress inside diameter surface with Scotch Brite or equivalent
- **15.** If applicable, inspect port block fittings and holding valve. Replace as necessary.
- **16.** Inspect the oil ports for blockage or the presence of dirt or other foreign material. Repair as necessary.

17. If applicable, inspect piston rings for cracks or other damage. Replace as necessary.

ASSEMBLY

- **NOTE:** Prior to cylinder assembly, ensure that the proper cylinder seal kit is used. See your JLG Parts Manual.
- **NOTE:** Apply a light film of hydraulic oil to all components prior to assembly.
 - **1.** A special tool is used to install a new rod seal into the applicable cylinder head gland groove.

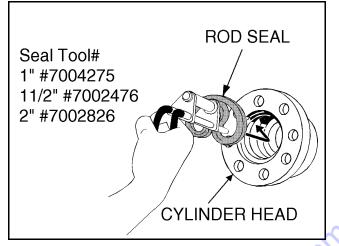


Figure 5-105. Rod Seal Installation

GO to Discount

WHEN INSTALLING NEW SEALS, ENSURE SEALS ARE INSTALLED PROPERLY. IMPROPER SEAL INSTALLATION COULD RESULT IN CYLINDER LEAKAGE AND IMPROPER CYLINDER OPERATION.

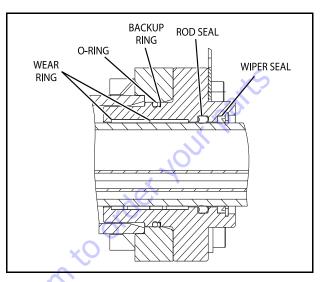


Figure 5-106. Cylinder Head Seal Installation

Use a soft mallet to tap a new wiper seal into the cylinder head gland groove. Install a new wear ring into the cylinder head gland groove.

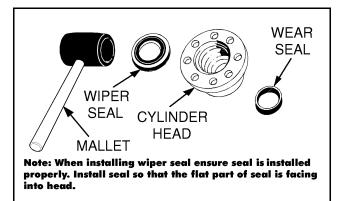


Figure 5-107. Wiper Seal Installation

3. Place a new o-ring and backup ring in the outside diameter groove of the cylinder head.

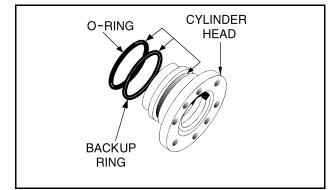


Figure 5-108. Installation of Head Seal Kit

- **4.** Carefully install the head gland on the rod, ensuring that the wiper and rod seals are not damaged or dislodged. Push the head along the rod to the rod end.
- **5.** Carefully slide the piston spacer onto the cylinder rod. Insert and tighten capscrew into spacer.
- **6.** Place a new o-ring and backup rings in the inner piston diameter groove.
- **7.** Using suitable protection, clamp the cylinder rod in a vise or similar holding fixture as close to the piston as possible.
- **8.** Carefully thread the piston on the cylinder rod hand tight ensuring that the o-ring and backup rings are not damaged or dislodged.
- **NOTE:** When installing the tapered bushing, piston and mating end of rod must be free of oil.
 - **9.** Assemble the tapered bushing loosely into the piston and insert capscrews through the drilled holes in the bushing and into the tapped holes in the piston.

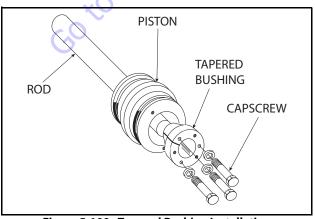


Figure 5-109. Tapered Bushing Installation

- **10.** Tighten the capscrews evenly and progressively in rotation refer to Figure 5-103. and Figure 5-103.
- **11.** After the screws have been torqued, tap the tapered bushing with a hammer (16 to 24 oz.) and brass shaft (approximately 3/4" in diameter) as follows;
 - **a.** Place the shaft against the cylinder rod and in contact with the bushing in the spaces between the capscrews.
 - **b.** Tap each space once; this means the tapered bushing is tapped 3 times as there are 3 spaces between the capscrews.

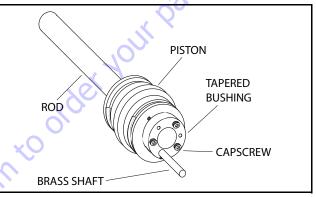


Figure 5-110. Seating the Tapered Bearing

- **12.** Re-torque the capscrews evenly and progressively in rotation refer to Figure 5-103. and Figure 5-103.
- **13.** Remove the cylinder rod from the holding fixture.

14. Place a new piston seal and wear rings in the outer piston diameter grooves. (A tube, with I.D. slightly larger than the O.D.of the piston is recommended to install the seal).

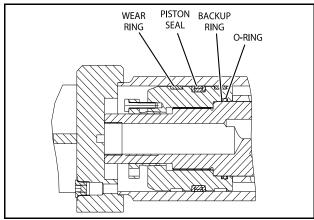


Figure 5-111. Piston Seal Installation

15. Position the cylinder barrel in a suitable holding fixture.

NOTICE

EXTREME CARE SHOULD BE TAKEN WHEN INSTALLING THE CYLINDER ROD, HEAD, AND PISTON. AVOID PULLING THE ROD OFF-CENTER, WHICH COULD CAUSE DAMAGE TO THE PISTON AND CYLINDER BARREL SURFACES.

16. With barrel clamped securely, and adequately supporting the rod, insert the piston end into the barrel cylinder. ensuring that the piston seal wear rings are not damaged or dislodged.

GO TO DISCOUNT'

- **17.** Continue pushing the rod into the barrel until the cylinder head gland can be inserted into the barrel cylinder.
- **18.** Apply Medium strength Threadlocking Compound to the socket head capscrew. Secure the cylinder head gland using the bracket, washers and capscrews. Torque capscrews to 85 ft. lbs. (115 Nm).

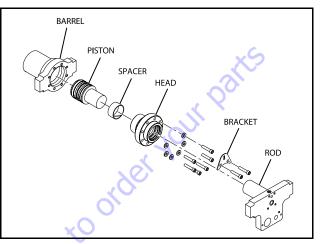


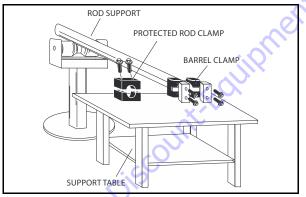
Figure 5-112. Rod Assembly Installation

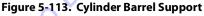
- **19.** After the cylinder has been reassembled, the rod should be pushed all the way in (fully retracted) prior to the reinstallation of any valves.
- **20.** Install the valve assembly. Torque capscrews refer to Figure 5-103.
- **21.** Install the check valves to the valve assembly in the rod port block. Torque to 45-50 ft.lbs. (61-68 Nm).
- **22.** Install the counterbalance valves to the valve assembly in the rod port block. Torque to 30-35 ft.lbs. (41-48 Nm).
- **23.** Install the relief valve to the valve assembly in the rod port block. Torque to 30-35 ft.lbs. (41-48 Nm).

Tower Boom Telescope Cylinder

DISASSEMBLY

NOTICE


DISASSEMBLY OF THE CYLINDER SHOULD BE PERFORMED ON A CLEAN WORK SURFACE IN A DIRT FREE WORK AREA.


1. Connect a suitable auxiliary hydraulic power source to the cylinder port block fitting.

DO NOT FULLY EXTEND CYLINDER TO THE END OF STROKE. RETRACT CYLINDER SLIGHTLY TO AVOID TRAPPING PRES-SURE

- 2. Operate the hydraulic power source and extend the cylinder. Shut down and disconnect the power source. Adequately support the cylinder rod, if applicable..
- **3.** Remove the counterbalance valves, check valves, shuttle valve, fitting, orifice and plugs from the valve assembly.
- **4.** Remove the capscrews securing the valve assembly to the rod, then remove the valve assembly.
- 5. Place the cylinder barrel into a suitable holding fixture.

6. Loosen and remove the plug from cylinder barrel end.

7. Mark cylinder head and barrel with a center punch for easy realignment. Using an allen wrench, loosen the cylinder head retainer capscrews, and remove capscrews, washers, and mounting plate from cylinder barrel, as applicable.

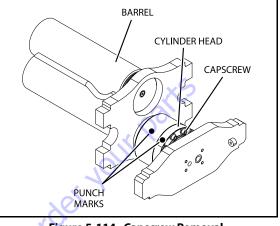


Figure 5-114. Capscrew Removal

8. Attach a suitable pulling device to the cylinder rod port block end or cylinder rod end, as applicable.

NOTICE

EXTREME CARE SHOULD BE TAKEN WHEN REMOVING THE CYLINDER ROD, HEAD, AND PISTON. AVOID PULLING THE ROD OFF-CENTER, WHICH COULD CAUSE DAMAGE TO THE PISTON AND CYLINDER BARREL SURFACES.

9. With the barrel clamped securely, apply pressure to the rod pulling device and carefully remove the complete rod 1 assembly from the cylinder barrel.

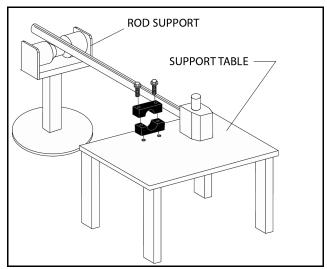


Figure 5-115. Cylinder Rod Support

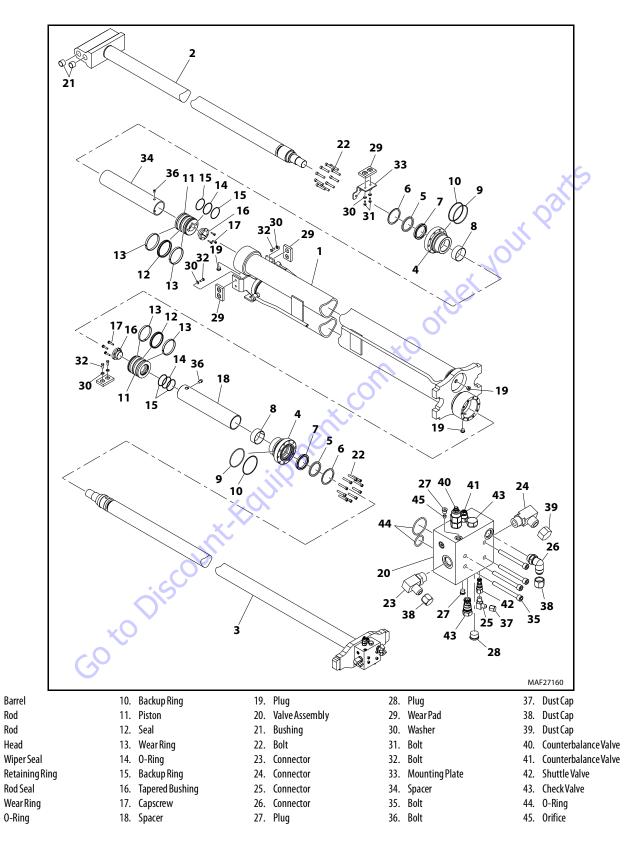
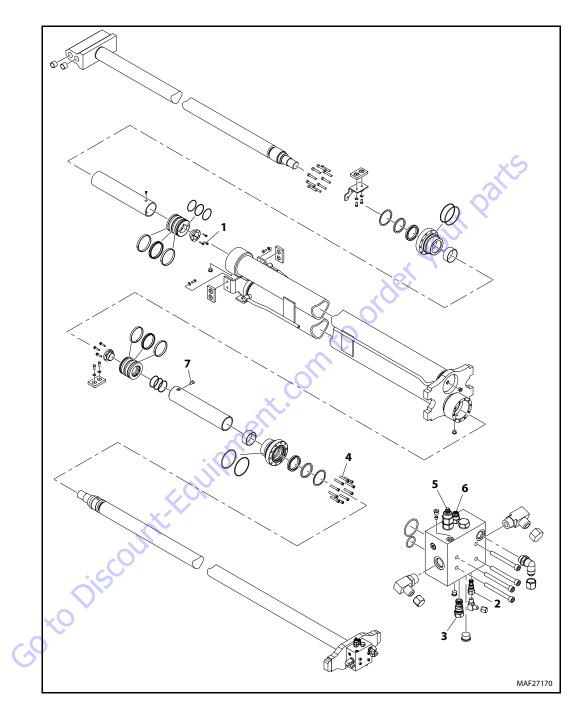


Figure 5-116. Tower Boom Telescope Cylinder

1.

2.

3.


4. 5.

6.

7.

8.

9.

- 1. Torque to 10 ft.lbs. (13 Nm)
- 2. Torque to 20-25 ft.lbs. (27-34 Nm)
- 3. Torque to 45-50 ft.lbs. (61-68 Nm)
- 4. Torque to 55 ft.lbs. (75 Nm)
- 5. Torque to 45-50 ft. lbs. (61-68 Nm)
- 6. Torque to 30-35 ft. lbs. (41-48 Nm)
- 7. Torque to 24 ft. lbs. (33 Nm)

Figure 5-117. Tower Boom Telescope Cylinder Torque Values

- **10.** Using suitable protection, clamp the cylinder rod in a vise or similar holding fixture as close to the piston as possible.
- 11. Remove capscrews from drilled holes
- **12.** Insert the capscrews in the threaded holes in the outer piece of the tapered bushing. Progressively tighten the capscrews until the bushing is loosen from the piston.
- **13.** Remove the tapered bushing from the piston.

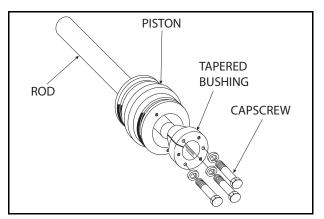


Figure 5-118. Tapered Bushing Removal

- **14.** Screw the piston counterclockwise by hand and remove the piston from cylinder rod.
- **15.** Remove and discard the piston seal, o-rings, backup rings and wear rings.
- **16.** Loosen and remove the capscrew from spacer. Remove the spacer from the cylinder rod.
- 17. Remove the rod from the holding fixture. Remove capscrews, washer and wear pad.Remove the cylinder head gland. Discard the o-rings, backup rings, rod seals, retaining ring and wiper seals.
- **18.** Repeat the steps 1 through 15 for the removal of rod 2 from the cylinder barrel.
- **19.** Remove the piston spacer from the rod. Discard the orings.
- **20.** Remove the rod from the holding fixture, Remove capscrews, washers, mounting plate, wear pad. Remove the cylinder head gland. Discard the o-rings, backup rings, rod seals, retaining ring and wiper seals.

CLEANING AND INSPECTION

- **1.** Clean all parts thoroughly in an approved cleaning solvent.
- 2. Inspect the cylinder rod for scoring, tapering, ovality, or other damage. If necessary, dress rod with Scotch Brite or equivalent. Replace rod if necessary.
- **3.** Inspect threaded portion of rod for excessive damage. Dress threads as necessary.
- 4. Inspect inner surface of cylinder barrel tube for scoring or other damage. Check inside diameter for tapering or ovality. Replace if necessary.
- Inspect piston surface for damage and scoring and for distortion. Dress piston surface or replace piston as necessary.
- **6.** Inspect threaded portion of piston for damage. Dress threads as necessary.
- **7.** Inspect seal and o-ring grooves in piston for burrs and sharp edges. Dress applicable surfaces as necessary.
- 8. Inspect cylinder head inside diameter for scoring or other damage and for ovality and tapering. Replace as necessary.
- **9.** Inspect seal and o-ring grooves in head for burrs and sharp edges. Dress applicable surfaces as necessary.
- Inspect cylinder head outside diameter for scoring or other damage and ovality and tapering. Replace as necessary.
- **11.** Inspect spacer for burrs and sharp edges. If necessary, dress inside diameter surface with Scotch Brite or equivalent.
- **12.** If applicable, inspect port block fittings and holding valve. Replace as necessary.
- **13.** Inspect the oil ports for blockage or the presence of dirt or other foreign material. Repair as necessary.
- **14.** If applicable, inspect piston rings for cracks or other damage. Replace as necessary.

ASSEMBLY

- **NOTE:** Prior to cylinder assembly, ensure that the proper cylinder seal kit is used. See your JLG Parts Manual.
- **NOTE:** Apply a light film of hydraulic oil to all components prior to assembly.
 - **1.** A special tool is used to install a new rod seal into the applicable cylinder head gland groove.

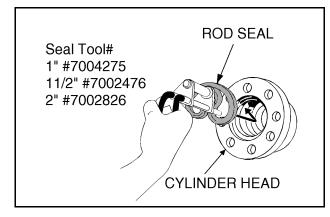


Figure 5-119. Rod Seal Installation

WHEN INSTALLING NEW SEALS, ENSURE SEALS ARE INSTALLED PROPERLY. IMPROPER SEAL INSTALLATION COULD RESULT IN CYLINDER LEAKAGE AND IMPROPER CYLINDER OPERATION.

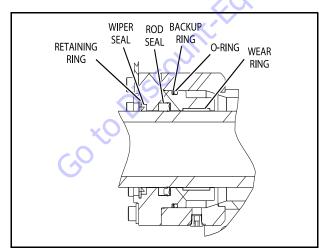
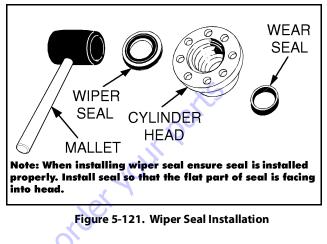



Figure 5-120. Cylinder Head Seal Installation

2. Use a soft mallet to tap a new wiper seal into the applicable cylinder head gland groove. Install a new wear ring and retainer ring into the applicable cylinder head gland groove.

3. Place a new o-ring and backup ring in the applicable outside diameter groove of the cylinder head.

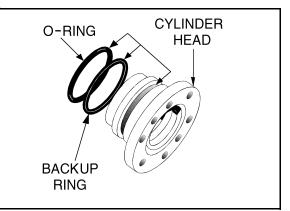


Figure 5-122. Installation of Head Seal Kit

- **4.** Install the head gland on the rod 2, ensuring that the wiper and rod seals are not damaged or dislodged. Push the head along the rod to the rod end, as applicable.
- 5. Insert o-rings into spacer inner groove.
- **6.** Carefully slide the piston spacer onto the cylinder rod, ensuring spacer o-rings are not dislodge and damaged.
- **7.** Using suitable protection, clamp the cylinder rod in a vise or similar holding fixture as close to piston as possible.
- **8.** Place a new o-ring and backup rings in the inner piston diameter groove.
- **9.** Carefully thread the piston on the cylinder rod and hand tight, ensuring that the o-ring and backup rings are not damaged or dislodged.
- **10.** Thread piston onto rod until it abuts the spacer end and install the tapered bushing.
- **NOTE:** When installing the tapered bushing, piston and mating end of rod must be free of oil.
 - **11.** Assemble the tapered bushing loosely into the piston and insert capscrews through the drilled holes in the bushing and into the tapped holes in the piston.

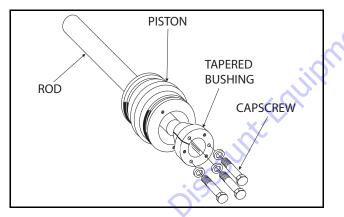


Figure 5-123. Tapered Bushing Installation

- **12.** Tighten the capscrews evenly and progressively in rotation to 9 ft. lbs. (12 Nm).
- **13.** After the screws have been torqued, tap the tapered bushing with a hammer (16 to 24 oz.) and brass shaft (approximately 3/4" in diameter) as follows;
 - **a.** Place the shaft against the cylinder rod and in contact with the bushing in the spaces between the capscrews.
 - **b.** Tap each space once; this means the tapered bushing is tapped 3 times as there are 3 spaces between the capscrews.

Figure 5-124. Seating the Tapered Bearing

14. Rotate the capscrews evenly and progressively in rotation to 9 ft. lbs. (12 Nm).

- **15.** Remove the cylinder rod from the holding fixture.
- **16.** Place new piston seal and wear rings in the outer piston diameter groove. (A tube, with I.D. slightly larger than the O.D. of the piston is recommended to install the solid seal).

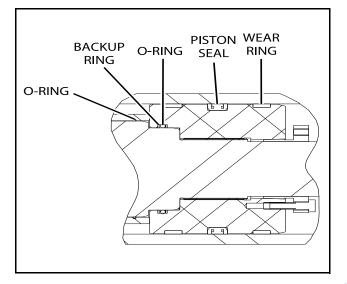
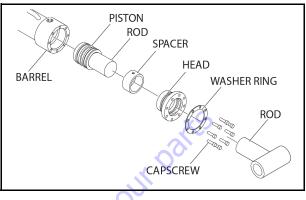


Figure 5-125. Piston Seal Kit Installation


17. Position the cylinder barrel in a suitable holding fixture.

EXTREME CARE SHOULD BE TAKEN WHEN INSTALLING THE CYLINDER ROD, HEAD, AND PISTON. AVOID PULLING THE ROD OFF-CENTER, WHICH COULD CAUSE DAMAGE TO THE PISTON AND CYLINDER BARREL SURFACES.

18. With barrel clamped securely, and while adequately supporting the rod, insert the piston end into the barrel cylinder. ensuring that the piston loading wear ring and piston seals are not damaged or dislodged.

19. Continue pushing the rod into the barrel until the cylinder head gland can be inserted into the barrel cylinder.

Figure 5-126. Rod Assembly Installation

- 20. Install the mounting plate onto the cylinder head.
- **21.** Apply Medium Strength Threadlocking Compound to the socket head bolts and secure the cylinder head gland using the washer and bolts. Torque bolts to 55 ft.lbs. (74.5 Nm).
- **22.** After the cylinder has been reassembled, the rod should be pushed all the way in (fully retracted) prior to the reinstallation of any holding valve or valves.
- **23.** Insert and tighten the plug to cylinder barrel end. Torque to 34-38.5 ft. lbs. (46-52 Nm).
- **24.** Repeat steps 1 through 5 for the assembly of rod 1 to the barrel.
- **25.** Carefully slide the spacer onto the rod and secure with the capscrew. Torque to capscrew to 19 ft. lbs. (25 Nm).
- **26.** Repeat steps 7 through 23 for the assembly of rod 1 to the barrel.
- 27. Install the valve assembly. Torque capscrews to 48 ft. lbs. (65 Nm).
- **28.** Install the counterbalance valves, check valves, shuttle valve, fitting, orifice and plugs to the valve assembly. Torque to as shown in Figure 5-116., Tower Boom Telescope Cylinder.

5.4 PRESSURE SETTING PROCEDURE

Cold temperatures have a significant impact on pressure readings. JLG Industries Inc. recommends operating the machine until the hydraulic system has warmed to normal operating temperatures prior to checking pressures. JLG Industries Inc. also recommends the use of a calibrated gauge. Pressure readings are acceptable if they are within \pm 5% of specified pressures.

To ensure all pressures are set correctly, the following procedures must be followed in order.

- **1.** Set up of the function pump.
- 2. Adjustments made at the main valve bank.
- 3. Adjustments made at the main boom valve.
- 4. Adjustments made at the frame valve bank.
- 5. Adjustments made at the platform valve bank.
- 6. Adjustments made in the Traction Circuit.

Set up of the Function Pump

PRESSURE COMPENSATOR (PC) SETTING

- 1. Install a high pressure gauge 5000 psi (345 bar) at the MP port of the main valve block.
- 2. Remove the Tower TELE IN coil.
- 3. Using the Analyzer, go to service mode --> set pressures --> passcode: 32376, select Tower telescope in.
- **4.** Activate tower tele-in (tower down switch position). The gauge should read 4000 psi (276 bar). To make an adjustment to this pressure, go back to the engine compartment to the function pump which is the rear pump. The high pressure relief adjustment is the adjustment closest to the pump case.
- 5. Loosen the locking set screw at the side of the adjustment. Adjust the PC to obtain 4000 psi (276 bar), clockwise increases pressure.
- **6.** After adjusting the pressure, tighten the locking set screw, and reconnect the Tele-in coil.

STAND BY PRESSURE OR LOAD (LS) SENSE PRESSURE

- 1. Install a low pressure gauge at port "MP" of the main valve block. The gauge must be capable of reading 500 psi (34.5 bar).
- 2. Start the engine, the gauge should read 500psi (34.5 bar).
- **3.** To make an adjustment to this pressure, go to the engine compartment, locate the function pump. The stand by adjustment is the adjustment outside adjustment. Using the same procedure as in the (PC) setting

above adjust (LS) to 500psi (34.5 bar). Shut down the engine and restart to confirm setting.

Adjustments made at the Main valve bank

REDUCED PRESSURE SECTION

- Install pressure gauge (5000 psi) at port MP5. Using the analyzer, go to service mode --> hyd warm up --> passcode: 12671. An alternative method is to unplug the temperature switch on tank manifold with the engine less than normal operating temperature. Adjust the relief valve located at 2 o'clock behind port P5, to obtain a gauge reading of 3600 psi (248 bar) and lock. Exit hydraulic warm up mode.
- 2. Install pressure gauge (5000 psi) at port MPT1.
- **3.** Using the Analyzer, go to service mode --> set pressures --> passcode: 32376, select Tower telescope in.
- 4. Activate tower tele-in.
- 5. The gauge should read 3200 psi (221 bar). Adjust the pressure reducing value, located at 3 o'clock behind port P5, until gauge reads 3200 psi (221 bar) and lock.

TOWER LIFT UP

- 1. Install a high pressure gauge at the M5 port of the main valve block.
- 2. Plug and cap the hose on port 5.
- **3.** Using the Analyzer, go to service mode --> passcode: 32376, select Tower lift up.
- 4. Activate lift up.
- **5.** The gauge should read 3700 psi. (255bar). the adjustment cartridge is located to the right of port M5. Turn clockwise to increase pressure, counter clockwise to decrease.

TOWER LIFT DOWN

NOTICE

WHEN SETTING PRESSURE, IF ANY FUNCTION MOVEMENT IS OBSERVED, STOP PRESSURE SETTING PROCESS.

- 1. Install a high pressure gauge at the M4 port of the main valve block.
- 2. Using the Analyzer, go to service mode --> set pressures --> passcode: 32376, select Tower lift down.
- **3.** Activate lift down. The gauge should read 1800 psi (124bar). The adjustment cartridge is located to the left of the MS2. Turn clockwise to increase, counterclockwise to decrease.

SWING

- 1. Install a high pressure gauge at port MS2.
- 2. Install the turntable lock pin.
- **3.** Activate swing RIGHT, the gauge should read 2000 psi (138 bar).
- **4.** The adjustment cartridge is located to the bottom rear cartridge. Turn counterclockwise to increase, clockwise to decrease.
- **5.** Install gauge at MS3.
- 6. Activate swing LEFT, the gauge should read 2000 psi. (138bar), the adjustment is located to the bottom front cartridge, Turn counterclockwise to increase pressure, clockwise to decrease pressure.

TOWER TELESCOPE OUT

- 1. Install a high pressure gauge at the M8 port of the main valve bank.
- 2. Plug the telescope out hose either at the valve bank (port #8) or at the inlet of the telescope cylinder (V1).
- **3.** Using the Analyzer, go to service mode --> set pressures --> passcode: 32376, select Tower telescope out.
- 4. Activate telescope out. The gauge should read 2850 psi. (196bar), the adjustment cartridge is to the right of M8 gauge port. Turn clockwise to increase, counterclockwise to decrease.

TOWER TELESCOPE IN

NOTICE

WHEN SETTING PRESSURE, IF ANY FUNCTION MOVEMENT IS OBSERVED, STOP PRESSURE SETTING PROCESS.

- 1. Install a high pressure gauge at the M7 port of the main valve block.
- 2. Using the Analyzer, go to service mode --> set pressures --> passcode: 32376, select Tower telescope in.
- **3.** Activate telescope in. The gauge should read 2500 psi (172 bar). The adjustment cartridge is to the left of the rear cartridge behind MS2. Turn clockwise to increase, counterclockwise to decrease.

Pressure on Main boom valve

MAIN TELE OUT

- 1. Install 1 high pressure gauge at port M2.
- 2. Disconnect main tele out hose cap port & plug hose at port 2 on valve bank or ext & tele cylinder.
- **3.** Activate tele out & adjust gauge should read 2500 psi (172 Bar). Adjustment is above port M2, clockwise increases pressure and counterclockwise decreases pressure.

MAIN TELE IN

- **1.** Install 1 high pressure gauge at M1.
- 2. Disconnect main tele in hose plug hose & cap port 1 on valve or at cylinder port ext.
- **3.** Activate main tele in and adjust gauge should read 3000 psi (138 bar). Adjustment is located on the end of the valve opposite platform, clockwise increases pressure, counterclockwise reduces pressure.

MAIN LIFT UP

- 1. Install high pressure gauge at port M5.
- 2. Disconnect hose from port 5 cap adaptor & plug hose.
- **3.** Using the Analyzer, go to service mode --> passcode: 20290, select Main lift up.
- **4.** Activate main lift up, gauge should read 3700 psi (255 bar). Adjustment is located at 7 o'clock to port 4, clockwise increases pressure, counterclockwise decreases pressure.

MAIN LIFT DOWN

NOTICE

WHEN SETTING PRESSURE, IF ANY FUNCTION MOVEMENT IS OBSERVED, STOP PRESSURE SETTING PROCESS.

- 1. Install high pressure gauge at port M4.
- 2. Lift main boom up approximately 5° above the rest.
- **3.** Using the Analyzer, go to service mode --> set pressures --> passcode: 32376, select Main lift down.
- 4. Activate main lift down.
- **5.** Gauge should Read 1500 psi (103 bar). Adjustment is located at 2 o'clock to port 6, clockwise increases pressure, counterclockwise decreases pressure.

Adjustments made at the Frame valve bank

AXLE EXTEND AND RETRACT, FRONT AND REAR

- 1. To extend the axles drive the machine back and forth until extended. A machine that cannot be driven must be jacked up.
- 2. On both the front and rear frame valve banks install a high pressure gauge on ports "MA1" for extend and "MA2" for retract.
- **3.** The gauge should read 2500 psi, for both directions. Turn clockwise to increase, counterclockwise to decrease.

STEERING, FRONT AND REAR

- **NOTE:** Use steer sensor calibration to steer each wheel individually.
 - 4. The axles must be extended to set the steer pressures.
 - **5.** Install a high pressure gauge at MS2 and MS4 gauge ports for steer right (extend), adjust to 2000 psi (138 bar), and MS1 and MS3 for steer left (retract).
 - 6. Adjust to 2600 psi (179 bar), on both the front and rear valves.
 - Each relief valve is located next to its own gauge port. Turn clockwise to increase, counterclockwise to decrease.

Adjustments made at the Platform valve bank

PLATFORM LEVEL UP

- 1. Install a high pressure gauge at gauge port ML1.
- 2. Activate level up to the end of Stroke, you should read 3000 psi (207bar).
- **3.** All the relief valves are located on the same Face. The level up relief valve is near the top towards the centerline of valve. Turn clockwise to increase, counterclockwise to decrease.

PLATFORM LEVEL DOWN

- 1. Install a high pressure gauge at gauge port ML2.
- **2.** Activate level down to the end of stroke, you should read 3000 psi (207bar).
- **3.** The level down relief valve is near the top towards the outside of this valve. Turn clockwise to increase, counterclockwise to decrease.

JIB LIFT UP

- 1. Install high pressure gauge at port MJ1.
- 2. Fully extend jib lift cylinder or cap port J1.
- **3.** Set pressure to 2800 psi. (193bar). Clockwise increases and counterclockwise decreases setting. Adjustment is on the boom side of MJB. Adjustment is towards the bottom of the valve towards the centerline of the valve.

JIB LIFT DOWN

- 1. Install high pressure gauge at port MJ2.
- 2. Fully retract jib lift cylinder or cap port J1.
- **3.** Set pressure to 1500 psi. (103bar). Clockwise increases and Counterclockwise decreases setting. Adjustment is on the boom side of MJA. Adjustment is towards the bottom of the valve towards the outside of the valve.

Adjustments made in Traction circuit

CHARGE PRESSURE RELIEF

- **1.** Install gauge 1000psi (69bar) at port M3 on traction pump.
- 2. With the drive hubs disconnected, start the engine.
- 3. Adjust the charge relief valve to obtain reading of 400psi (28bar). The charge relief is located on the turntable side of the pump above M3. Clockwise increases pressure, Counterclockwise decreases pressure

LOOP FLUSHING RELIEF

- 1. Install pressure gauge at port MP on traction valve.
- 2. With hubs still disconnected, activate Drive.
- 3. Adjust loop flushing valve to obtain gauge reading of 350psi (24bar). Clockwise increases pressure, counter-clockwise decreases.

5.5 HYDRAULIC SYSTEM WARM UP

For optimal life and performance of the hydraulic system in extremely cold temperatures, the control system monitors the hydraulic system temperature and automatically limits the function speeds of the high demand functions.

While the system is cold and in the warm up mode, the tower lift, main lift, and main telescope functions are limited to creep speeds and is indicated to the operator by flashing the creep light on the platform control panel.

Operating the machine while in the warm up mode will generate sufficient heat to bring the hydraulic temperature up to allowable temperatures and the warm up mode will be automatically turned off.

This system is activated when the hydraulic oil temperature in the return manifold is below 30°F (-1°C) and the engine coolant temperature is below 150°F (65°C). In warm up, the engine operates at mid engine speed and a valve is energized which loads the pump to build heat. This valve is active only when no function is selected. Warm up ends when the return manifold temperature reaches 50°F (10°C) or the engine coolant reaches 150°F (65° C). Functions being operated when the warm up mode turns off will remain in the creep speed until the function is re-initiated.

5.6 DRIVE PUMPS

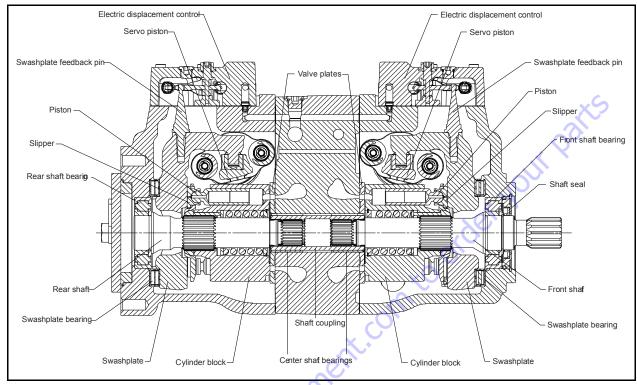
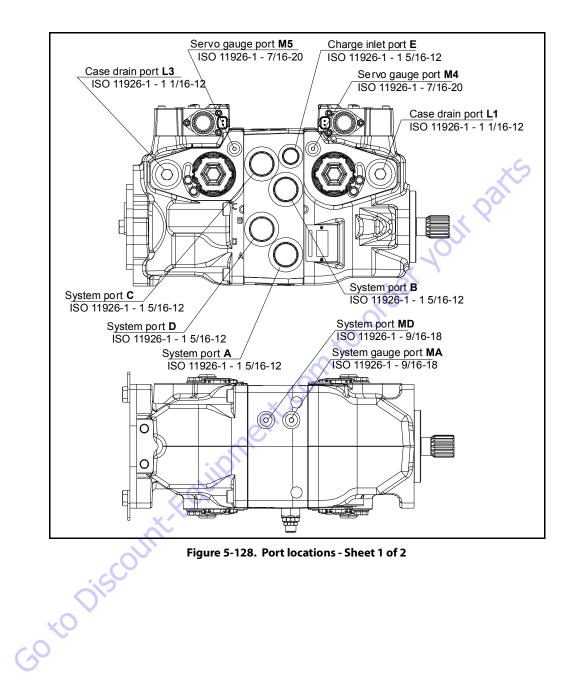



Figure 5-127. Piston Pump Cross Sectional View

Port Locations and Gauge Installation

	Port identifier	Port size	Wrench size	Reading	Gauge size, bar [psi]
	L1,L2,L3	1 1/16-12 UNF 2B	9/16 internal hex	Case drain	10 bar [100 psi]
	MA, MB, MC, MD	9/16-18 UNF	1/4 internal hex	System pressure	600 bar [10,000 psi]
	M3	9/16-18 UNF 2B	1/4 internal hex	Charge pressure	50 bar [1000 psi]
C	M4, M5	7/16-20 UNF 2B	3/16 internal hex	Servo pressure	50 bar [1000 psi]
	Х7	9/16-18 UNF 2B	1/4 internal hex	Brakepressure	50 bar [1000 psi]

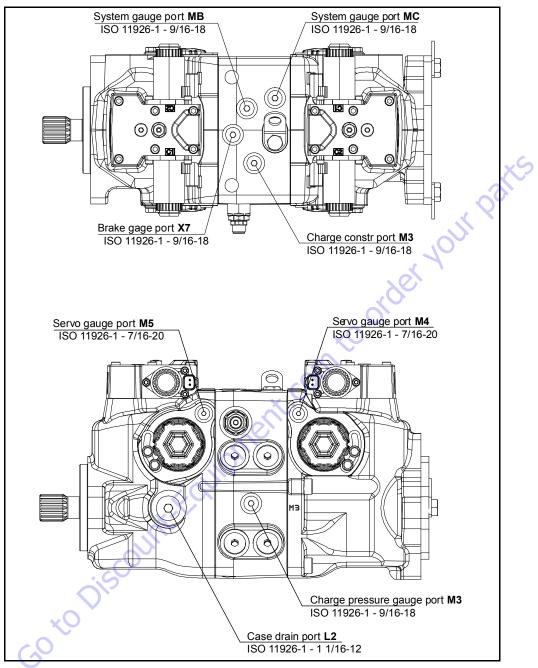


Figure 5-129. Port locations - Sheet 2 of 2

Initial Startup Procedures

Follow this procedure when starting-up a new pump or when restarting a pump that has been removed. Ensure the pump is thoroughly tested on a test stand before installing.

Prior to installing the pump, inspect for damage that may have occurred during shipping.

- 1. Ensure that the machine hydraulic oil and system components (reservoir, hoses, valves, fittings, and heat exchanger) are clean and free of any foreign material.
- **2.** Install new system filter element(s) if necessary. Check that inlet line fittings are properly tightened and free of air leaks.
- **3.** Install the pump. Install a 50 bar [1000 psi] gauge in the charge pressure gauge port M3.
- **4.** Fill the housing by adding filtered hydraulic fluid to the upper case drain port. If the controls are installed on top, open the construction plugs in the top of the controls to assist in air bleed.
- **5.** Fill the reservoir with hydraulic fluid of the recommended type and viscosity. Use a 10-micron filler filter. Ensure construction plug is closed after filling is complete.
- 6. Disconnect the pump from all control input signals.

AFTER START-UP THE FLUID LEVEL IN THE RESERVOIR MAY DROP DUE TO SYSTEM COMPONENTS FILLING DAMAGE TO HYDRAULIC COMPONENTS MAY OCCUR IF THE FLUID SUPPLY RUNS OUT. ENSURE RESERVOIR REMAINS FULL OF FLUID DURING START-UP.

A CAUTION

AIR ENTRAPMENT IN OIL UNDER HIGH PRESSURE MAY DAMAGE HYDRAU-LIC COMPONENTS. CHECK CAREFULLY FOR INLET LINE LEAKS.

DO NOT RUN AT MAXIMUM PRESSURE UNTIL SYSTEM IS FREE OF AIR AND FLUID HAS BEEN THOROUGHLY FILTERED.

- 7. Use a common method to disable the engine to prevent it from starting. Crank the starter for several seconds. Do not to exceed the engine manufacturer's recommendation. Wait 30 seconds and then crank the engine a second time as stated above. This operation helps remove air from the system lines. Refill the reservoir to recommended full oil level.
- 8. When the gauge begins to register charge pressure, enable and start engine. Let the engine run for a minimum of 30 seconds at low idle to allow the air to work itself out of the system. Check for leaks at all line connec-

tions and listen for cavitation. Check for proper fluid level in reservoir.

- **9.** When adequate charge pressure is established (as shown in model code), increase engine speed to normal operating rpm to further purge residual air from the system.
- **10.** Shut the off engine. Connect the pump control signal. Start the engine, checking to be certain the pump remains in neutral. Run the engine at normal operating speed and carefully check for forward and reverse control operation.
- **11.** Continue to cycle between forward and reverse for at least five minutes to bleed all air and flush system contaminants out of the system loop.
- **NOTE:** Normal charge pressure fluctuation may occur during forward and reverse operation.
 - **12.** Check that the reservoir is full. Remove charge pressure gauge and cap port. The pump is now ready for operation.

Troubleshooting

A CAUTION

HIGH INLET VACUUM CAUSES CAVITATION WHICH CAN DAMAGE INTERNAL PUMP COMPONENTS.

ESCAPING HYDRAULIC FLUID UNDER PRESSURE CAN HAVE SUFFICIENT FORCE TO PENETRATE YOUR SKIN CAUSING SERIOUS INJURY AND/OR INFECTION AND MAY BE HOT ENOUGH TO CAUSE BURNS. RELIEVE PRES-SURE IN THE SYSTEM BEFORE REMOVING HOSES, FITTINGS, GAUGES, OR COMPONENTS. SEEK IMMEDIATE MEDICAL ATTENTION IF YOU ARE CUT OR BURNED BY HYDRAULIC FLUID.

CONTAMINATION CAN DAMAGE INTERNAL COMPONENTS. TAKE PRECAU-TIONS TO ENSURE SYSTEM CLEANLINESS WHEN REMOVING AND REIN-STALLING SYSTEM COMPONENTS AND LINES

ltem	Description	Action
Control operates pump in one direction only	Control coil failure.	Measure resistance at coil pins. Resistance should be 14.2W (24V) or 3.66W (12V) at 20°C [70° F]. Replace coil.
Nopumpfunction	No power to controller.	Restore power to controller.
Erratic pump function	Electrical connection to pump is bad.	Disconnect connection, check wires, recon- nect wires.
Erratic or no machine function	External controller malfunction or hydraulic system problem.	Verify external controller problem using spare controller. Replace controller. Check hydraulic system fluid level/pressures/filters/etc. Fix hydraulic system problems.

Table 5-34. Electrical troubleshooting

Table 5-35. Neutral difficult or im	possible to find

		ilyuluule system problems.		
Table 5-35. Neutral difficult or impossible to find				
ltem	Description	Action		
Input to pump control	Input to control module is operating improperly.	Disconnect input and check to see if pump comes back to neu- tral. If Yes, input fault, replace/repair external controller. If No, go to next step.		
Pump control neutral	Neutral set improperly.	Shunt servo gauge ports M4 and M5 together with external hose and see if pump comes back to neutral. If Yes: control neu- tral improperly set. If no: balance swashplate (see Mechanical neutral adjustment). If you still cannot set neutral, replace con- trol.		

Table 5-36. System operating hot

ltem	Description	Action	
Oil level in reservoir	Insufficient hydraulic fluid will not meet cooling demands of system.	Fill reservoir to proper level.	
Heat exchanger	Heat exchanger not sufficiently cooling the system.	Check air flow and input air temperature for heat exchanger. Clean, repair or replace heat exchanger.	
Charge pressure	Low charge pressure will overwork system.	Measure charge pressure. Inspect and adjust or replace charge relief valve. Inspect charge pump. Repair or replace charge pump.	
Charge pump inlet vacuum	High inlet vacuum will overwork system. A dirty fil- ter will increase the inlet vacuum. Inadequate line size will restrict flow.	Check charge in let vacuum. If high, inspect in let filter and replace as necessary. Check for adequate line size, length or other restrictions.	
System relief pressure settings	If the system relief valves are worn, contaminated, or valve settings are too low, the relief valves will be overworked.	Verify settings of high pressure relief valves and replace valves as necessary.	
System pressure	Frequent or long term operation over system relief setting will create heat in system.	Measure system pressure. If pressure is too high, reduce loads.	

ltem	Description	Action	
Oil level in reservoir	Insufficient hydraulic fluid to supply system loop.	Fill reservoir to proper level.	
Control orifices	Control orifices are blocked.	Clean control orifices.	
Control screens	Control screens are blocked.	Clean or replace control screens.	
Charge pressure with pump in neutral	Low charge pressure insufficient to recharge system loop.	Measure charge pressure with the pump in neu- tral. If pressure is low, go to next step.	
Pump charge relief valve	A pump charge relief valve that is leaky, contami- nated, or set too low will depressurize the sys- tem.	Adjust or replace pump charge relief valve as nec- essary.	
Charge pump inlet filter	A clogged filter will under supply system loop.	Inspect filter and replace if necessary.	
Charge pump	A malfunctioning charge pump will provide insufficient charge flow.	Repair or replace the charge pump.	
System pressure	Low system pressure does not provide enough power to move load.	Measure system pressure. Continue to next step.	
Charge check / HPRVs	Defective charge check / HPRVs cause system pressure to be low.	Repair or replace charge check / HPRVs.	
Input to control	Input to control module is operating improperly.	Repair or replace control.	
Optional control cutoff valve	Control cutoff valve coil not energized.	Ensure charge pressure to control via port X7. If none, confirm control cutoff valve coil is ener- gized. If still no pressure, repair or replace control cutoff valve.	

Table 5-37. System will not operate

Table 5-38. System noise or vibration

ltem	Description	Action	
Reservoir oil level	Low oil level leads to cavitation.	Fill reservoir.	
Aeration of the oil/pump inlet vacuum	Air in system decreases efficiency of units and con- trols. Air in system is indicated by excessive noise in pump, foaming in oil, and hot oil.	Find location where air is entering into the system and repair. Check that inlet line is not restricted and is proper size.	
Coldoil	If oil is cold, it may be too viscous for proper function and pump cavitates.	Allow the oil to warm up to its normal operating temperature with engine at idle speed.	
Pump inlet vacuum	High inlet vacuum causes noise/cavitation.	Check that inlet line is not restricted and is proper size. Check filter and bypass switch.	
Shaft couplings	A loose input shaft to prime mover coupling will cause excessive noise.	Replace loose shaft coupling.	
Shaftalignment	Misaligned input and prime mover shafts create noise.	Correct misalignment.	
Charge/system relief valves	Unusual noise may indicate sticking valves. Possible contamination.	Clean/replace valves and test pump. May be a nor- mal condition.	

ltem	Description	Action
Oil level in reservoir Low oil level will cause sluggish response.		Fill reservoir.
Charge check / HPRVs	Incorrect pressure settings will affect system reaction time.	Replace charge check / HPRVs.
Low prime mover speed	Low engine speed will reduce system perfor- mance.	Adjust engine speed.
Charge and control pressures	Incorrect pressures will affect system perfor- mance.	Measure and adjust charge and control pres- sures.
Air in system	Air in system will produce sluggish system response.	Fill tank to proper level. Cycle system slowly for several minutes to remove air from system.
Contaminated control orifices	Control orifices are plugged.	Clean control orifices.
Contaminated control screens	Control screens are plugged.	Clean or replace control screens.
Pumpinlet vacuum	Inlet vacuum is too high resulting in reduced system pressure.	Measure charge inlet vacuum. Inspect line for proper sizing. Replace filter. Confirm proper bypass operation.

Table 5-39. Sluggish system response

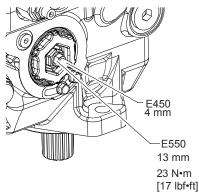
, nouted b

Adjustments

CONTAMINATION CAN DAMAGE INTERNAL COMPONENTS AND VOID YOUR WARRANTY. TAKE PRECAUTIONS TO ENSURE SYSTEM CLEANLINESS WHEN REMOVING AND REINSTALLING SYSTEM LINES

- 1. Thoroughly clean the outside of the pump.
- **2.** If removing the pump, tag each hydraulic line. When you disconnect hydraulic lines, cap them and plug each open port to prevent contamination.
- **3.** Ensure the surrounding area is clean and free of contaminants like dirt and grime.
- **4.** Inspect the system for contamination.
- **5.** Check the hydraulic fluid for signs of contamination: oil discoloration, foam in the oil, sludge, or metal particles.
- **6.** If there are signs of contamination in the hydraulic fluid, replace all filters and drain the hydraulic system. Flush the lines and refill the reservoir with the correct filtered hydraulic fluid.
- **7.** Before reinstalling the pump, test for leaks.

CHARGE PRESSURE RELIEF VALVE.


- Install a 50 bar [1000 psi] pressure gauge in charge pressure gauge port M3. Install a 10 bar [100 psi] gauge at case pressure port L1, L2, or L3. Operate the system with the pump in neutral (zero displacement) when measuring charge pressure.
- 2. The table below shows the acceptable pump charge pressure range for some nominal charge relief valve settings (refer to model code located on serial number plate). These pressures assume 1800 min-1 (rpm) pump speed and a reservoir temperature of 50°C [120°F], and are referenced to case pressure.
- **NOTE:** Listed pressures assume a pump speed of 1800 min-1 (rpm) and charge flow of 26.5 l/min [7 US gal/min]. At higher

pump speeds or higher charge flows the charge pressure will rise over the rated setting.

- **3.** Loosen the locknut and rotate the adjusting screw clockwise to increase the setting; counterclockwise to decrease it. Subtract the case pressure reading to compute the actual charge pressure.
- **NOTE:** Pressure change per turn is dependent on charge flow entering pump.
 - **4.** While holding the adjusting screw, torque locknut to 12 Nm [9 lbft].
 - 5. When you achieve the desired charge pressure setting, remove the gauges and plug the ports.

DISPLACEMENT LIMITER ADJUSTMENT

- 1. Mark servo cylinder location in case it rotates during displacement limiter adjustment.
- 2. Loosen the locknut (E550).

3. Rotate the adjusting screw (E450) based on the following table. Rotating the adjusting screw clockwise decreases the maximum displacement of the pump while rotating the adjusting screw counterclockwise increases the maximum displacement.

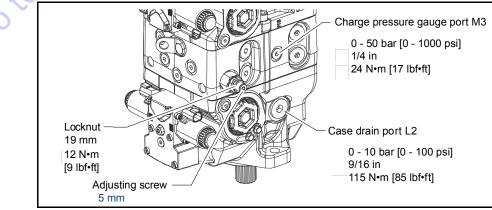


Figure 5-130. Charge Pressure Adjustment

4. After establishing the desired maximum displacement setting, hold adjusting screw in place and tighten the locknut. Torque to 23 Nm [17 lbft]. C

BE SURE SERVO CYLINDER DOES NOT ROTATE WHEN DISPLACEMENT LIM-ITER LOCKNUT (E550) IS TORQUED.

5. One turn of the adjusting screw will change the maximum displacement approximately as follows.

Table 5-40. Displacement Limiter Adjustment Data

Displacement	Locknut wrench size and torque	Adjusting screw size	Approximate displacement change per revolution of adjusting screw
45	13 mm 23 Nm [17 lbft]	4 mm internal hex	5.1 cc/turn

CONTROL NEUTRAL ADJUSTMENT

All functions of the Electric Displacement Control (EDC) are preset at the factory. Adjust the pump to neutral with the pump running on a test stand or on the vehicle/machine with the prime mover operating. If adjustment fails to give satisfactory results, you may need to replace the control or coils.

- Install a 50 bar [1000 psi] gauge in each of the two servo gauge ports (M4 and M5). Disconnect the external control input (electrical connections) from the control. Start the prime mover and operate at normal speed.
- Use a 4mm internal hex wrench to hold the neutral adjusting screw stationary while loosening the locknut with a 13mm wrench.

- **3.** Observe pressure gauges. If necessary, turn adjusting screw to reduce any pressure differential.
- **NOTE:** Adjustment of the EDC is very sensitive. Be sure to hold the hex wrench steady while loosening the locknut. Total adjustment is less than 120 degrees.
 - 4. Rotate the neutral adjusting screw clockwise until the pressure increases on the gauge. Note the angular position of the wrench. Then rotate the neutral adjusting screw counterclockwise until the pressure increases by an equal amount on the other gauge. Again note the angular position of the wrench.

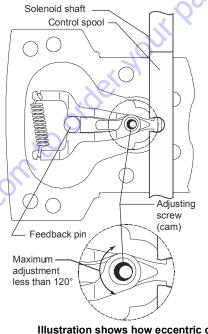


Illustration shows how eccentric cam on adjusting screw rotates to adjust neutral.

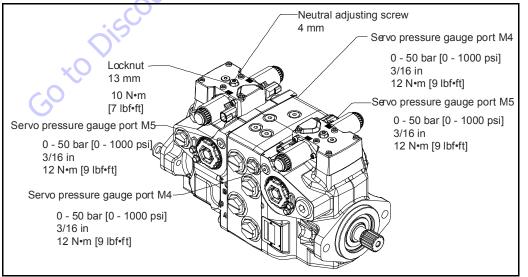


Figure 5-131. Control Neutral Adjustment

- 5. Rotate the neutral adjusting screw clockwise half the distance between the wrench positions noted above. The gauges should read the same pressure, indicating that the control is in its neutral position.
- 6. Hold the neutral adjusting screw stationary and tighten the lock nut. Torque to 10.Nm [7 lbft]. Do not over torque the nut.
- 7. When the neutral position is set, stop the prime mover, remove the gauges, and install the gauge port plugs. Reconnect the external control input.
- **NOTE:** A small pressure differential of 1.5 bar [22 psi] or less is acceptable. Zero differential is usually not possible.

MECHANICAL NEUTRAL ADJUSTMENT

Mechanical neutral is set with the pump running at 1800 min (rpm). To set neutral, you must stroke the pump in each direction.

This procedure details setting neutral for the entire pump, one side at a time. The procedure is the same for each side of each pump so you will need to repeat it four times to set mechanical neutral for both the front and rear sections. Alternate M4/ M5 and MA/MB to zero out forward and reverse directions of the front unit, then move the gauges to M4/M5 of the rear unit and MC/MD (system gauge ports for the rear unit). Refer to the drawing that follows to identify all ports. The front and rear sections are basically mirror images of each other. The control solenoids C1 and C2 are marked on each control.

While performing this adjustment, you monitor the following pressures.:

- Servo pressure at M4 and M5
- System pressure at MA and MB or MC and MD
- Pressure differential between M4 and M5 (optional)
- Pressure differential between A and B or C and D (optional)

PUMP SETUP

100K

- 1. Attach a 50 bar [1000 psi] gauge to each servo pressure port M4 and M5.
- **2.** Attach a 600 bar [10 000 psi] gauge to each system pressure port (MA and MB for front pump, MC and MD for rear pump).
- **3.** Remove servo cylinder locking screws (E350) and plates (E300) from both sides of the pump.
- **4.** Disconnect the control solenoids from the vehicle wiring harness.
- If using a PWM signal to set mechanical neutral, connect the control solenoids C1 and C2 to the signal source. Ensure the source supplies no current to the solenoids until required in the following procedure.

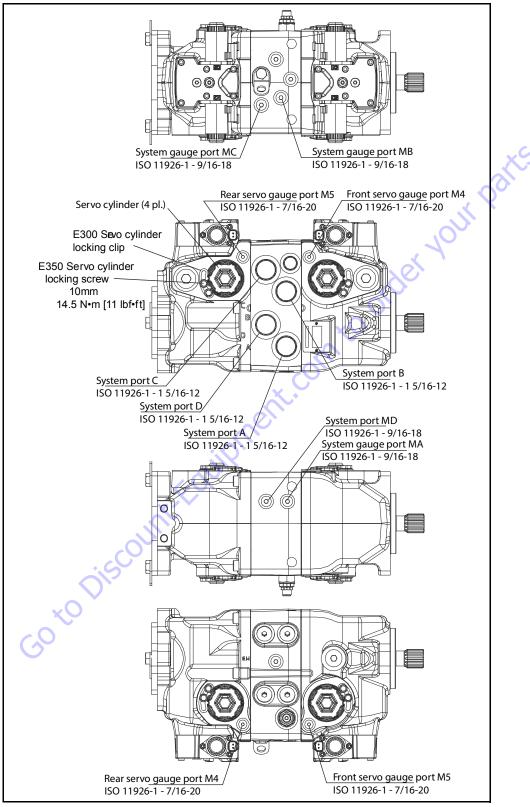


Figure 5-132. Servo and System Pressure Gauge Port Locations

SERVO ADJUSTMENT

- **6.** Run prime mover at 1800 min (rpm).
- **7.** If using a PWM signal, ensure the signal is off. Check the servo pressure gauges. Ensure the differential between M4 and M5 is less than 1.5 bar [22 psi].
- **8.** Using a 3/4 in deep socket, unthread both servo cylinders 2-3 turns. This step ensures the servo cylinders have no contact with the servo piston.
- **9.** Stroke the pump by turning the control eccentric screw (or supplying current to solenoid C1) until the servo pressure at port M4 is 1 to 2 bar [14 -29 psi] greater than at port M5 and the system pressure gauges indicate displacement. Pressure should be greater at port MA for clockwise rotation, or MB for counterclockwise rotation. This also indicates the servo piston is in contact with the servo cylinder on side M5.
- 10. Slowly thread the servo cylinder on the M5 side in until the system pressure differential starts to decrease. Maintain servo pressure differential between 1-2 bar [14-29 psi] during this step. Continue turning the servo cylinder in until the system pressure differential (between ports MA/MB or MC/MD) is less than 1.5 bar [22 psi]. This procedure sets the servo and swashplate to mechanical neutral on the M5 side.
- **11.** To complete setting neutral, repeat steps 1-5 but stroke the pump in the opposite direction by turning the eccentric screw in the opposite direction, or by supplying current to solenoid C2. Reverse gauge locations (M4 for M5, MB for MA etc.) from those stated above since the pump is now stroking the other direction.
- **12.** Set neutral for the rear pump by repeating steps 1-6 on the rear pump. Remember that the rear pump is a mirror image of the front pump and therefore the locations of the servo gauge ports (M4/M5) and the control solenoids (C1/C2) are opposite.
- 13. Remove all gauges and replace gauge port plugs.

Removing The Pump

Before working on the pump, thoroughly clean the outside. If the pump has an auxiliary pump attached, remove both pumps as a single unit. Tag and cap all hydraulic lines as you disconnect them, and plug all open ports to ensure that dirt and contamination do not get into the system.

CONTAMINATION CAN DAMAGE INTERNAL COMPONENTS. TAKE PRECAU-TIONS TO ENSURE SYSTEM CLEANLINESS WHEN REMOVING AND INSTALL-ING SYSTEM LINES.

- 1. Thoroughly clean all dirt and grime from the outside of the pump.
- 2. Tag, disconnect, and cap each hydraulic line connected to the pump. As hydraulic lines are disconnected, plug each open port, to ensure that dirt and contamination do not get into the pump.
- **3.** Remove the pump and its auxiliary pump (if applicable) as a single unit.
- **NOTE:** Be careful, do not damage solenoids and electrical connections when using straps or chains to support the pump.

Inspection

- **1.** Ensure the work surface and surrounding area are clean and free of contaminants such as dirt and grime.
- 2. Inspect the system for contamination.
- **3.** Look at the hydraulic fluid for signs of system contamination, oil discoloration, foam in the oil, sludge, or metal particles.

Replacement

- **1.** Before replacing the pump, replace all filters and drain the hydraulic system. Flush the system lines and fill the reservoir with the correct, filtered hydraulic fluid.
- 2. Fill the pump with clean, filtered hydraulic fluid.
- **3.** Attach the pump to the prime mover. Torque mounting screws according to the manufacturers recommendation.
- **4.** Replace all hydraulic lines. Ensure the charge inlet line is filled with fluid.

Electric Control Module

REMOVAL

Refer to exploded diagram, next page.

- 1. Using a 5 mm internal hex wrench, remove the six capscrews (D250).
- **2.** Remove the control module and gasket (D150). Discard the gasket.
- **3.** If necessary, remove orifices (F100) using a 3 mm internal hex wrench. Tag and number them for reinstallation.
- 4. Inspection
- **5.** Inspect the machined surfaces on the control and top of the pump. If you find any nicks or scratches, replace the component.
- **NOTE:** Remove plug on top of control to ensure the swashplate feedback pin is properly positioned in the center of the control module when installing control.

- **NOTE:** Ensure you install dowel pins (D300) in housing before installing control.
 - 1. Install a new gasket (D150).
 - **2.** If you removed screen (D084), install a new one. Install with the mesh facing outward.

- **3.** If previously removed, install orifices (F100) using a 3 mm internal hex wrench. Torque to 2.5 Nm [1.8 lbft].
- **4.** Install the control module and six capscrews (D250).
- Using a 5 mm internal hex wrench, torque the capscrews (D250) to 13.5 Nm [10.lbft].

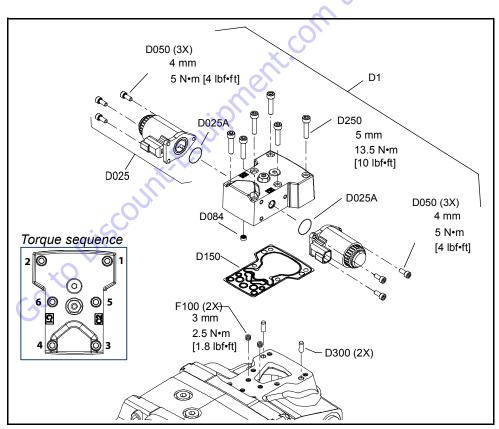


Figure 5-133. Control Module And Solenoid Removal/installation

CONTROL SOLENOIDS REMOVAL

- 1. Disconnect electrical connection and remove the three capscrews (D050) using a 4.mm internal hex wrench.
- **2.** Remove the solenoid (D025) and O-ring (D025A). Discard the O-ring.
- **3.** If necessary, remove the coil using a 12 point 26 mm socket.

CONTROL SOLENOIDS INSPECTION

1. Inspect the machined surface on the control. If you find any nicks or scratches, replace the component.

CONTROL SOLENOIDS REASSEMBLY

- 1. Lubricate new O-ring (D025A) using petroleum jelly and install.
- 2. Install solenoid with three capscrews (D050) using a 4 mm internal hex wrench. Torque screws to 5 Nm [4 lbft].
- **3.** Install coil using a 12 point 26 mm socket. Torque coil nut to 5 Nm [3.7 lbft].
- **4.** Reconnect electrical connections and test the pump for proper operation.

Shaft, Seal, and Bearing

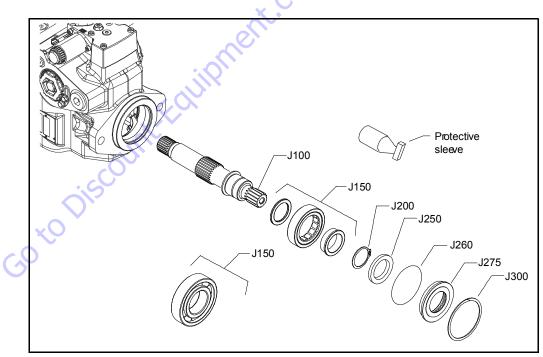
The front pump input shaft assembly is serviceable without disassembling the pump, the rear shaft is not. Orient the pump on the work surface so the shaft is pointing to the side.

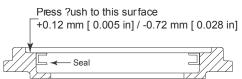
REMOVAL

- **1.** Unwind the spiral ring (J300) from the housing to release the shaft/seal/bearing subassembly.
- 2. Pry on the lip of the seal carrier (J275) to remove it from the pump. Remove the seal carrier. Remove and discard O-ring (J260). Press the seal (J250) out of the carrier and discard.
- **3.** Pull the shaft (J100) with bearing (J150) out of the pump. If necessary, tap lightly on the shaft to dislodge it from the cylinder block. C

DO NOT DAMAGE THE HOUSING BORE, SHAFT OR BEARING WHEN REMOV-ING THE SHAFT AND BEARING.

Remove the retaining ring (J200) using retaining ring pliers. Press the bearing off the shaft.




Figure 5-134. Shaft Assembly

INSPECTION

 Inspect the shaft journals for wear, scratching, and pits. Check the splines for fretting; replace if damaged. Rotate the bearing, if it does not rotate smoothly, replace it.

REASSEMBLY

- 1. Press the bearing (J150) onto the shaft (J100) and replace the retaining ring (J200). Ensure the retaining ring diameter is less than 38.84 mm [1.53.in] when installed on the shaft.
- 2. Install the shaft/bearing assembly into the pump.
- **3.** Lubricate and install a new O-ring (J260) onto seal carrier (J275). Press a new seal (J250) into the seal carrier. Press the seal until it is flush within +0.12mm [0.005 in] or -0.72 mm [0.0028 in] of the inside lip of the carrier: see illustration.

- **4.** Cover the shaft with a protective sleeve while installing the seal carrier. Hand press the seal carrier into the housing. Ensure the seal carrier clears the spiral ring groove in the housing. Remove the protective sleeve.
- 5. Wind the spiral ring into the housing. Ensure the inside diameter of the spiral ring is greater than 68 mm [2.677 in] after installation.

Charge Pump

Position pump with front shaft pointing downward. Attach securely to a proper work stand. If an auxiliary pump is attached, remove auxiliary pump before servicing charge pump.

REMOVAL

- 1. Remove screws (K351), and hangers (K975).
- 2. Remove running cover (K301). Remove and discard seal ring (K250).
- **3.** Using a 10 mm internal hex, remove screws (K400). Remove cover (K101).
- 4. Remove charge pump assembly with shaft.
- **NOTE:** Note position of alignment pin (S500) in housing. Alignment pin position will change for clockwise or counterclockwise rotation.
 - 5. Remove and discard seal (S300).
 - 6. Using a snap ring pliers, remove two clips (K205).
 - Remove geroter cover (S200). Remove geroter assembly (S100).
 - **8.** Remove and discard gasket (K151). Remove alignment pins (K450).
 - **9.** If it is necessary to remove housing (K300), use a 10 mm internal hex to remove screws (K350).
 - 10. Remove housing (K300).
 - **11.** Remove and discard seal (K150).

INSPECTION

- **1.** Inspect all machined surfaces. If you find any nicks or scratches, replace the component.
- 2. Inspect geroter and cover for wear or damage. If wear or damage is found, replace geroter kit.
- 3. Inspect shaft for wear or damage. If found, replace shaft.
- 4. Inspect journal bearings in aux pad and housing. If worn or damaged, replace journal bearings or aux pad or housing assembly.

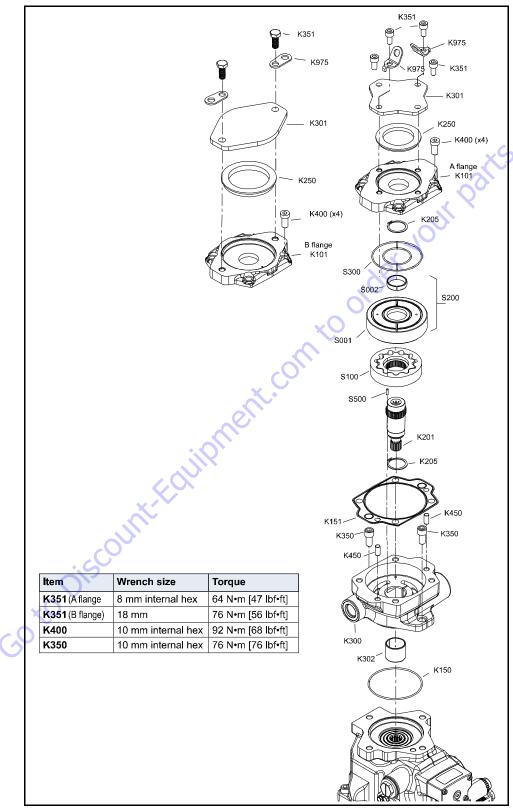
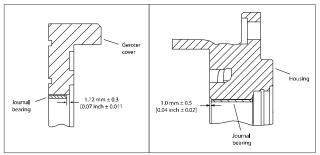



Figure 5-135. Charge Pump

REPLACING CHARGE PUMP JOURNAL BEARINGS

Use a suitable press to remove and replace the journal bearings. Refer to the drawings below for installation dimensions.

ASSEMBLY

- 1. Lubricate and install new seal (K150).
- **2.** Install housing (K300). Install screws (K350). Using a 10 mm internal hex, torque screws per listing in table.
- 3. Install alignment pins (K450). Install new gasket (K151).
- Lubricate and reassemble charge pump assembly [shaft (K201), pin (S500), geroter (S100), cover (S200), two clips (K205)].
- **5.** Install charge pump assembly into housing in original position.
- **6.** Lubricate and install seal (S300).
- 7. Install aux pad (K101).
- 8. Using a 10 mm internal hex, install screws (K400). Torque screws per listing in table.
- **9.** Lubricate and install seal (K250). Install running cover (K301).

10. Install screws (K351) and brackets (K975). Torque screws per listing in the table.

Charge Check / HPRV

The high pressure relief and charge check valve assembly may be removed for cleaning and replacement of the O-rings. These valves are factory set and are not field adjustable. Refer to the pump model code for the factory setting when ordering replacements.

REMOVAL

- 1. Using an 8 mm internal hex wrench, remove the valve seat plugs (K007).
- **2.** Carefully lift the valve (H002) and spring (H003) assemblies from the center section using a magnet.

INSPECTION

1. Inspect the valves and mating seats in the valve seat plugs (K007) for damage or foreign material.

- **1.** Lubricate and install new O-rings (K008, K010) and backup ring (K009) on valve seat plug (K007).
- 2. Verify that the conical springs (H003) are properly retained on the check relief valves (H002). Install the valve assemblies into the center section. Ensure each valve assembly moves freely in its bore.
- **3.** Install the valve seat plugs into the center section and torque to 80 Nm [59.lbft].
- **4.** Operate machine through full range of controls to ensure proper operation. Check for leaks.

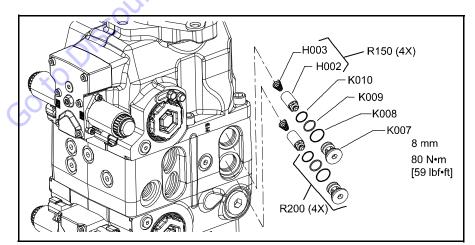


Figure 5-136. Charge Check / HPRV

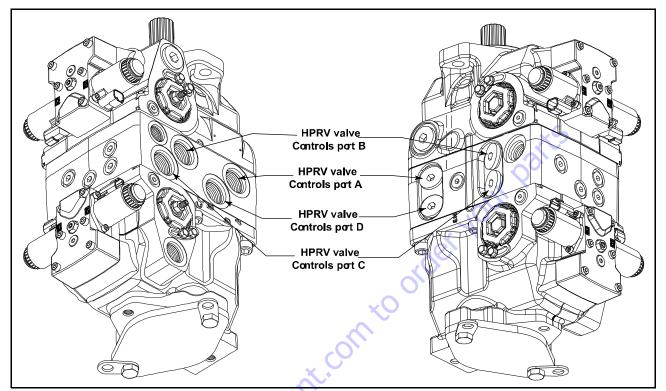


Figure 5-137. Charge Check / HPRV

Charge Pressure Relief Valve

Replace the charge pressure relief valve (V10-1) or (V10-2) as a complete unit. Do not attempt to repair the internal components of the valve.

REMOVAL

1. Using a 27 mm (V10-1) or a 1 in (V10-2) wrench, remove the charge pressure relief valve. Discard the O-rings (V10A).

INSPECTION

1. Inspect the sealing surfaces of the pump and charge pressure relief valve for nicks or scratches, replace components as necessary.

- **1.** Lubricate and install new O-rings (V10A).
- Install the charge pressure relief valve (V10). Torque to 52 Nm [38 lbft].
- **3.** Operate vehicle/machine through full range of controls to ensure proper operation.

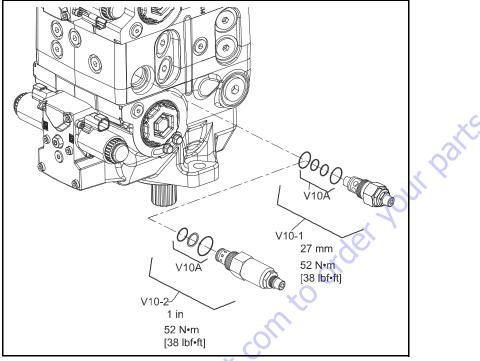


Figure 5-138. Charge Pressure Relief Valve

Control Cutoff Valve

Replace the control cutoff valve as a complete unit. Do not attempt to repair the internal components of the valve.

REMOVAL

- 1. Disconnect the coil from the vehicle/machine wire harness.
- 2. Using a 24 mm hex wrench, remove the control cutoff valve coil nut (G30). Remove the coil (G20).
- **3.** Use a 1 1/16 in hex wrench to remove the control cutoff valve (G10). Remove and discard the O-rings and backup rings (G10A).

INSPECTION

1. Inspect the sealing surfaces of the pump and control cutoff valve for nicks or scratches. Replace components as necessary.

- 1. Lubricate and install new O-rings (G10A) onto the valve.
- **2.** Install the control cutoff valve (G10). Torque to 46 Nm [34 lbft]. Slide the coil (G20) onto the valve.
- **3.** Install the coil nut (G30). Torque to 9 Nm [7.lbft]. Do not overtorque.
- **4.** Operate vehicle/machine through full range of controls to ensure proper operation

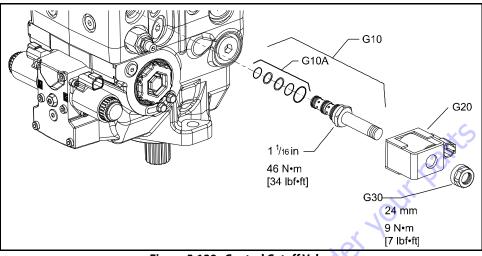


Figure 5-139. Control Cutoff Valve

Table 5-41. Fastener Size and Torque Chart

ltem	Fastener	Wrench size	Torque
D015	Neutral adjust screw	4 mm internal hex	NA
D050	Control coil mounting screw	4 mm internal hex	8Nm[5.9lbft]
D060	Neutral adjust locking nut	13 mm hex	10 Nm [7 lbft]
D200	Swash plate feedback pin (not shown)	13 mm hex	25 Nm [18.4lbft]
D250	Electric control mounting screw	5 mm internal hex	13 Nm [9.5 lbft]
E350	Servo cylinder locking screw	10 mm hex	14.5 Nm [11lbft]
G10	Control cutoff valve	1 1/16 in hex	45 Nm [33 lbft]
G10B	Control cutoff valve coil nut	24 mm hex	9 Nm [7 lbft]
K007	Charge check / HPRV	8 mm internal hex	80 Nm [60 lbft]
K350	A pad cover mounting screw	17 mm hex	70 Nm [52 lbft]
	B pad cover mounting screw	8 mm hex	111 Nm [82 lbft]
V10-1	Charge relief valve	27 mm hex	52 Nm [38 lbft]
V10-2	Charge relief valve	1 in hex	52 Nm [38 lbft]

Table 5-42. Plug Size and Torque Chart

ltem	0-ring plug	Wrench size	Torque
B015	7/16-20	3/16 internal hex	20 Nm [15 lbft]
B020	1-1/16-12	9/16 internal hex	48 Nm [35 lbft]
D065	7/16-20	3/16 internal hex	12Nm[9lbft]
G250	9/16-18	1/4 internal hex (hardened plug)	45 Nm [33 lbft]

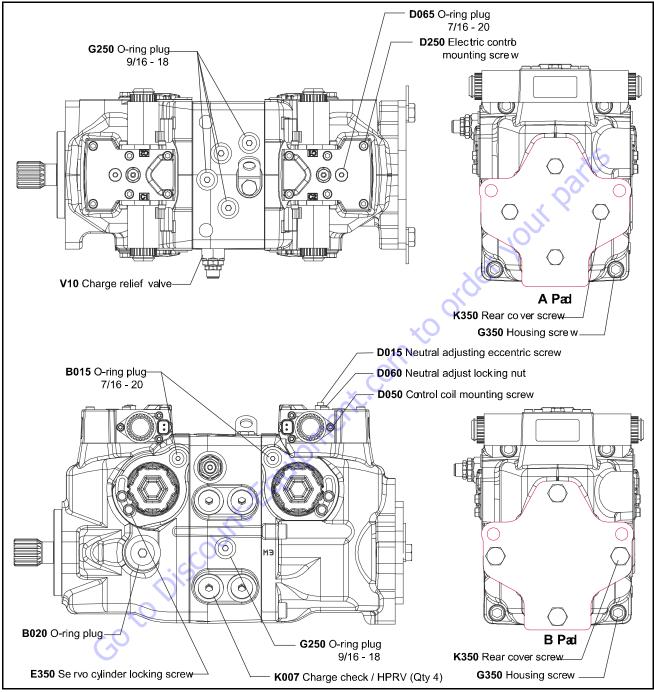
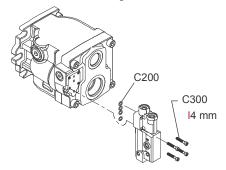
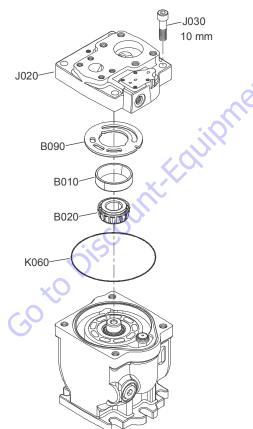
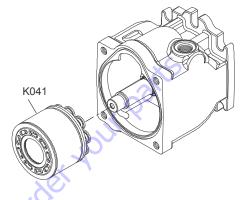
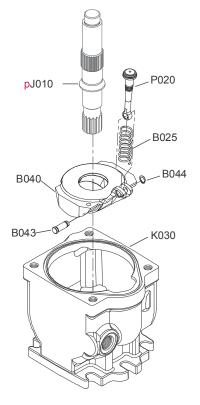



Figure 5-140. Fastener and Plug Locations

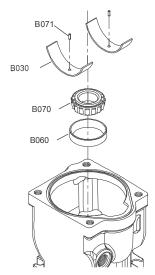

5.7 FUNCTION PUMP

Disassembly

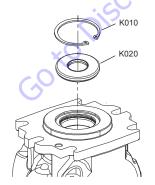

1. Remove the control from the endcap by removing the 4 control bolts (C300), using a 4 mm internal hex wrench.


- 2. Remove and discard the 4 O-rings (C200).
- **3.** Remove the 4 endcap screws (J030) using a 10 mm internal hex wrench.

- **6.** Remove the bearing cup (B010), bearing cone (B020) and housing O-ring (K060). Discard the O-ring.
- 7. Tilt the housing on its side to allow fluid to drain.
- **8.** Remove the cylinder block kit while holding onto the front shaft.



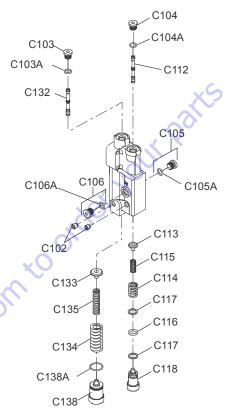
- **9.** Set cylinder block on a clean dry surface.
- **10.** Rotate pump back to a position so that the shaft is pointing down.
- **11.** Pull the shaft (J010) from the shaft seal.



- **4.** Carefully remove the endcap (J020). Prevent the valve (B090) plate from falling off.
- **5.** Place the endcap and valve plate in a clean area, protecting them from contamination.
- **12.** Compress the bias spring (B025) and rotate the servo piston assembly (P020) towards the swashplate (B040).
- **13.** Lift the swashplate/servo piston assembly up at an angle and remove it from the housing.

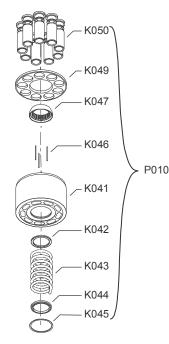
- **14.** Remove the servo piston (P020) and bias spring (B025) from the swashplate by removing the clevis pin (B043) and snap ring (B044). Discard the snap ring.
- **15.** Pull to remove the front tapered roller bearing cup (B060) and cone (B070).

- **16.** Examine the cradle bearings (B030) to determine if they need replacement.
- **NOTE:** Removing the pins (B071) will likely damage the cradle bearings, so make sure you have replacement bearings before you remove them.
 - **17.** If cradle bearings need replacing, remove the 2 pins (B071) holding the cradle bearings, and then remove the cradle bearings. Note the location and orientation of the bearings for re-installation.
 - 18. Orient the housing with the flange facing up.
 - **19.** Using snap-ring pliers, remove the snap ring (K010).



20. Carefully pry out the shaft seal (K020).

If you are unable to pull the shaft seal out, try to push the seal out by going through the inside of the housing.


21. Remove the 4 plugs (C103, C104, C105, C106) and their O-rings (C103A, C104A, C105A, C106A). Discard the O-

rings. Remove the 2 set screws (C102). Remove the spools (C112, C132). Note which bore each spool came out of. Also note the orientation of each spool for reinsertion. There may be differences in reinserting into the same bore.

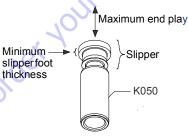
- **22.** Remove the adjusting screw (C138) and the O-ring (C138A). Discard the O-ring. Remove the springs (C134, C135) and spring guide (C133).
- **23.** Remove the adjusting screw (C118), O-ring (C116) and 2 backup rings (C117). Discard the O-ring and backup rings. Remove the springs (C114, C115) and spring guide (C113).
- **24.** Pull to remove the slipper retainer (K049) with the pistons (K050) from the cylinder kit.

NOTE: The pistons are not selectively fitted, however units with high hourly usage may develop wear patterns. Number the pistons and bores for reassembly if they are to be reused.

- **25.** Remove the ball guide (K047).
- 26. Remove the 3 pins (K046).
- **NOTE:** Most repairs do not require block spring removal. Perform this procedure only if you suspect problems with the block spring.
 - **27.** Turn the block over. Using a press, apply pressure on the block spring washer (K044) to compress the block spring (K043). Compress the spring enough to safely remove the spiral retaining ring (K045). While maintaining pressure, unwind the spiral retaining ring. Carefully release the pressure and remove the outer block spring washer, block spring, and inner block spring washer (K042) from the cylinder block.

RISK OF PERSONAL INJURY: COMPRESSING THE BLOCK SPRING REQUIRES ABOUT 350 TO 400 N [80 TO 90.LBF]. USE A PRESS SUFFICIENT TO MAINTAIN THIS FORCE WITH REASONABLE EFFORT. ENSURE THE SPRING IS SECURE BEFORE ATTEMPTING TO REMOVE. THE SPIRAL RETAINING RING. RELEASE THE PRESSURE SLOWLY AFTER THE RETAINING.RING IS REMOVED.

Inspection

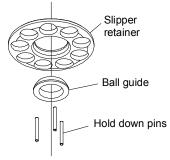

After disassembly, wash all parts (including the end-cap and housing) thoroughly with clean solvent and allow to air dry. Blow out oil passages in the housing and endcap with com-

pressed air. Conduct inspection in a clean area and keep all parts free from contamination. Clean and dry parts again after any rework or resurfacing.

PISTONS AND SLIPPERS

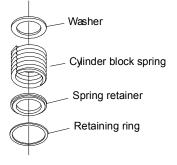
Inspect the pistons for damage and discoloration. Discolored pistons may indicate excessive heat; do not reuse.

Inspect the running surface of the slippers. Replace any piston assemblies with scored or excessively rounded slipper edges. Measure the slipper foot thickness. Replace any piston assemblies with excessively worn slippers. Check the slipper axial end-play. Replace any piston assemblies with excessive endplay.

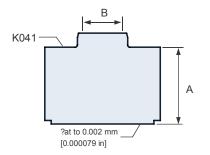


Minimum slipper foot thickness and maximum axial end-play are given in the table below.

JFrame	
Slipperfoot thickness	3.23 mm [0.127 in]
Piston/slipper end play	0.05 mm [0.002 in]


BALL GUIDE, SLIPPER RETAINER, AND HOLD-DOWN PINS

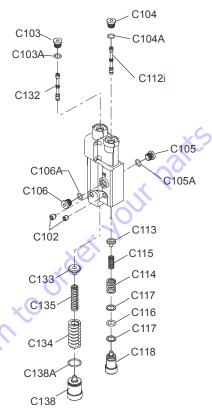
The ball guide should be free of nicks and scratches, and should not be excessively scored. Examine for discoloration that may indicate excessive heat or lack of lubrication. The slipper retainer should be flat, and slippers should fit in the retainer with minimal side play. Place the hold-down pins on a flat surface and roll them to make sure they are straight. Discard and replace any damaged parts.


BLOCK SPRING, AND WASHERS

If cylinder kit was fully dissembled, visual inspection of the cylinder block, spring, and washers should indicate minimal wear. Replace if cracks or other damage is present.

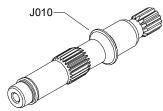
CYLINDER BLOCK

Examine the running face of the cylinder block. The surface should be smooth and free of nicks and burrs. Ensure that no scratches or grooves exist; these may drastically reduce output flow.



J Frame	45-60 cc	65-75 cc
Minimum cylinder block height (A)	62.25 mm [2.45 in]	
Maximum block bore diameter (B)	19.8 mm 21.57 m [0.785 in] [0.85 in	

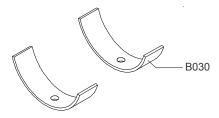
CONTROL


Carefully examine the plug(s) for signs of wear. Also check the small tip of the plug(s) for heavy wear and replace if necessary. Inspect each spool's springs to make sure they are intact. Check the inside and outside surfaces of the springs for wear and replace if necessary. Check the spool's outside diameter

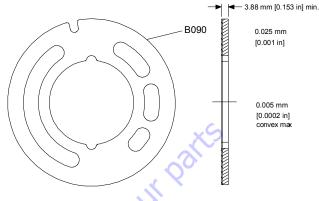
for scratches and / or burrs. Clean and coat all spools, bores, and seals with a light coating of hydraulic oil.

INPUT SHAFT

Check to see that the shaft (J010) and its splines are straight and free of damage or heavy wear. Inspect the shaft surface where it meets the shaft seal. Replace the shaft if a groove exists at the sealing land surface that may let dirt into or hydraulic fluid out of the unit. Clean the sealing area with a nonabrasive material if necessary. Lubricate the shaft with a light coat of hydraulic fluid.

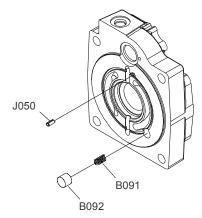

SWASHPLATE

Carefully inspect each surface of the swashplate for wear. All swashplate surfaces should be smooth. Inspect the swashplate's slipper running surface for damage and brass transfer. Excessive brass transfer from slippers may indicate that the slippers should be replaced. Finally, check the swashplate bearing journal for scratches. Replace swashplate if necessary.

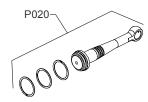


JOURNAL BEARINGS

Inspect the journal bearings for damage or excessive wear. Replace journal bearings if scratched, warped, or excessively worn. The polymer wear layer must be smooth and intact.



recommended to detect cracks. The valve plate must be replaced if any cracks exist.

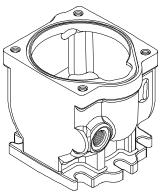

ENDCAP

Inspect the endcap. Remove the check valve (B092) to expose the spring (B091). Check and record orientation of the timing pin (J050) The split in the timing pin should be facing into or out of the slot in the valve plate. Inspect the check valve for wear on its sealing face and replace if necessary. Make sure the spring is undamaged. Replace any components if excess wear is present.

SERVO PISTON

Check the servo piston assembly (P020) for any obvious wear or damage. Check the corresponding endcap bore for galling or excessive wear. Discard the piston if damaged. Replace the servo piston-rings.

VALVE PLATE


Inspect the valve plate for scratches and grooves. Check the plate for evidence of any cavitation along the running face of the valve plate. If pitting from cavitation exists, replace the valve plate. Check for excess wear on the brass running face. If any discoloration or burn marks are observed, replace the valve plate.

Run a fingernail or pencil tip across the diameter of the sealing land surface (see illustration). No deep or outstanding grooves should be felt, as these may decrease pump flow. Lap or replace if grooves or nicks are present. Inspect the mating surfaces of the endcap and valve plate for any possible contamination; even a few thousandths of an inch may affect pump operation.

Measure the thickness of the valve plate. Ensure that valve plate parallelism is equal to or less than 0.025 mm [0.001 in]. Appearance should be flat and smooth on both the running face and the bottom surface. The valve plate should be flat to 0.005 mm [0.0002.in] convex. A magnetic particle inspection is

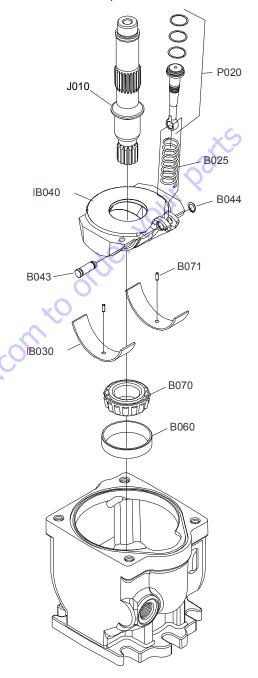
HOUSING

Inspect the housing to ensure that it is clean and free of foreign material. Inspect the swashplate bearing surfaces, and endcap mating surfaces.

SHAFT BEARING KITS

The tapered roller bearing kit consists of a cup and cone. Make sure the cup and cone are free of excessive wear or contamination. Rotate the bearings to check for smoothness. If a contaminated bearing is suspected, clean with a solvent and lubricate with hydraulic fluid.

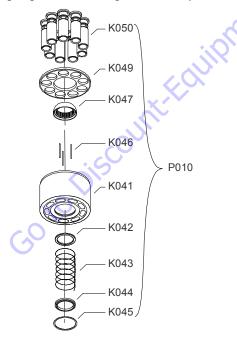
NOTE: Replace the bearing if the problem is not remedied by cleaning.


Inspect for uneven wear. If abnormal wear is found, replace the bearing kit.

Assembly

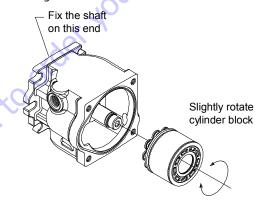
1. Coat the journal bearings (B030) with hydraulic fluid and install them into the pump housing. Punch in retaining pins (B071) a minimum of 0.5 mm [0.002 in] below the bearing surface.

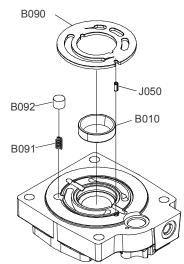
NOTE: If journal bearings are reused, reinstall them in their original orientation and position.


2. Reinstall shaft bearing cup (B060) and cone (B070). Before replacing the bias spring (B025), coat the curved surface of the swashplate with hydraulic fluid.

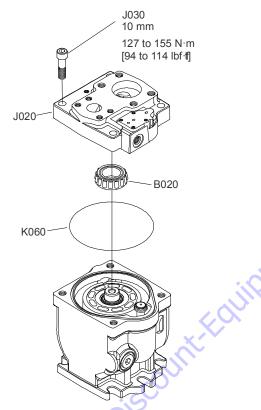
- **3.** Reinstall the swashplate/servo piston/bias spring assembly in its original orientation in the housing. Rotate the servo piston perpendicular to the swashplate, and at the same time compress the bias spring to fit into housing pocket. Lubricate all sides of the servo piston and its respective bore liberally with hydraulic oil. Also, lubricate the flat face of the swashplate to prevent premature wear during start-up.
- **4.** Insert the input shaft (J010) through the bearing into the housing. You may need to push on the servo piston to rotate the swashplate in order to put the shaft in properly.
- 5. Coat all parts with hydraulic fluid prior to reassembly.

COMPRESSING THE BLOCK SPRING REQUIRES ABOUT 350 TO 400 N [80 TO 90 LBF]. USE A PRESS SUFFICIENT TO MAINTAIN THIS FORCE WITH REASONABLE EFFORT. ENSURE THE SPRING IS SECURE BEFORE ATTEMPTING TO INSTALL.THE SPIRAL RETAINING RING. RELEASE THE PRES-SURE SLOWLY AFTER THE RETAINING RING IS INSTALLED.

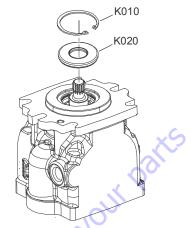

6. Install the inner block spring washer (K042), block spring (K043), and outer washer (K044) into the cylinder block. Using a press, compress the block spring enough to expose the retaining ring groove. Wind the spiral retaining ring (K045) into the groove in the cylinder block.


- **7.** Turn the block over and install the hold-down pins (K046), and ball guide (K047) to the cylinder block.
- **8.** Install the pistons (K050) to the slipper retainer (K049). Install the piston/retainer assembly into the cylinder block. Ensure the concave surface of the retainer seats on the ball guide. If you're reusing the pistons, install

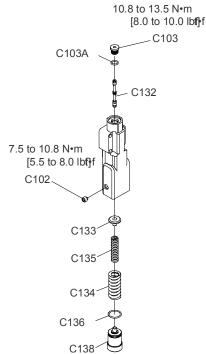
them to the original block bores. Lubricate the pistons, slippers, retainer, and ball guide before assembly. Set the cylinder kit aside on a clean surface until needed.


- **NOTE:** Be sure to install the slipper retainer so it mates correctly with the ball guide (concave side of the slipper retainer against the convex side of the ball guide).
 - **9.** Set the pump on its side. Secure the end of the shaft with one hand and keep it horizontal. Insert the cylinder kit onto the shaft. While holding the shaft still, slightly rotate the cylinder block kit to help start the shaft splines over the ball guide and align it with the block splines. When the cylinder block kit slides completely over the shaft splines, reposition the unit with the flange facing downward.

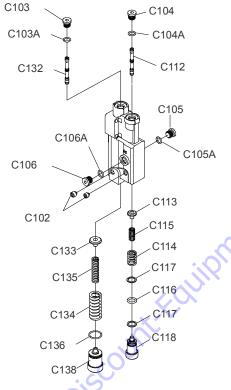
10. Clean the valve plate (B090) and endcap. Install the timing pin (J050) in the endcap and verify that it is properly oriented with the split facing into or out of the slot in the valve plate. The timing pin should be installed to 3.61 ? 0.25.mm [0.14.7.0.01 in] above the valve plate surface. Apply a liberal amount of assembly grease to the backside of the valve plate surface to hold it in position. Install the valve plate over the timing pin, check valve (B092), and bearing cup (B010).

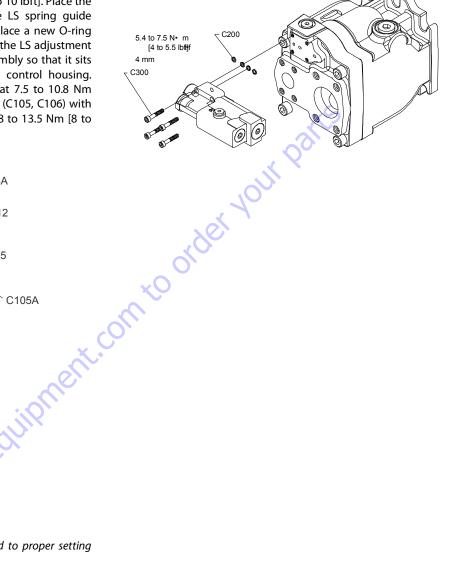


- **NOTE:** To insure proper pump operation, it is extremely important to ensure that there is no contamination between the end-cap and valve plate.
 - 11. Install the bearing cone (B020) onto the shaft. Using assembly grease to hold the seal (K060), install the endcap to the housing. Ensure that seals remain properly seated and are not pinched during assembly. With a 10 mm internal hex wrench, install and torque endcap screws at 127 to 155 Nm [94.to.114.lbft], using the criss cross pattern. Retorque the first screw to ensure proper torque retention.



12. Lubricate the lip of the new shaft seal (K020) with clean hydraulic fluid. Place a protective sleeve over the shaft end to prevent damage to the seal during installation. Keeping the seal perpendicular to the shaft, press the new seal into the housing just far enough to clear the retaining ring groove. Install seal with the cupped side toward the shaft bearing. Do not damage the seal during installation. Using the appropriate snap ring pli-


ers, install the seal retaining ring (K010). Remove the installation sleeve.


- **13.** Clean all control parts and cover with a light coating of hydraulic fluid prior to reassembly.
- 14. Install the spherical end of the PC spool (C132) into the PC bore (refer to illustration). Install the PC plug (C103) using a new O-ring (C103A). Torque at 10.8 to 13.5 Nm [8.to.10.lbft]. Place the two PC springs (C134, C135) onto the PC spring guide (C133) and install into the PC bore. Place a new O-ring onto the PC plug and install it so that it sits one turn below the surface of the control housing. Install and tighten set screw (C102) at 7.5 to 10.8 Nm [5.5 to 8.0 lbft] to retain the adjusting plug.

15. Hold the control in a horizontal position. Install the spherical end of the LS spool (C112) into the LS bore (see illustration). Using a new O-ring, install the LS plug (C104), torque at 10.8 to 13.5 Nm [8 to 10 lbft]. Place the 2 LS springs (C114, C115) onto the LS spring guide (C113) and install into the LS bore. Place a new O-ring (C116) and backup rings (C117) onto the LS adjustment screw (C118). Install the LS plug assembly so that it sits one turn below the surface of the control housing. Install and tighten set screw (C102) at 7.5 to 10.8 Nm [5.5.to 8.0 lbft]. Also, install the plugs at 10.8 to 13.5 Nm [8 to 10 lbft].

using a criss cross pattern and retorque the first screw to ensure proper torque retention.

NOTE: PC and LS spools need to be adjusted to proper setting according to tag nomenclature.

16. Using petroleum jelly to retain them, install 4 new seal rings (C200) in the recesses on the control housing. Install the control assembly onto the endcap using the 4 screws (C300). Torque at 5.4 to 7.5 Nm [4.0 to 5.5 lbft]

5.8 GEAR PUMP

Disassembly

Prior to proceeding it may be necessary to prepare some subassemblies separately.

The details for preparing each subassembly are given in the following section.

Also, some general recommendations are given below.

CLEANLINESS

Cleanliness is a primary factor for reliable pump performance. Wash the outside of the pump thoroughly before disassembly and all pieces prior to assembly. Cleaning parts with clean shop solvent and air drying is usually adequate.

LUBRICATION OF MOVING PARTS

During assembly, it is imperative to provide lubrication with clean hydraulic oil to all the running parts of the pump.

It is also necessary to coat the seals with grease. The absence of lubrication during assembly can cause the unit to seize after a few minutes of running.

CARE OF SURFACE TREATMENT

Be careful when handling all the internal surfaces, especially bearings, gears, and body faces. Do not touch or score them with metal tools or cutting edges.

MARKING THE PARTS

Mark the parts before completely disassembling a pump. The marks allow components to be reassembled in the same relative position. This action should be applied to the body, bearings, and gears. Scribing, bluing, or using a felt tip pen to mark the outside of the body on the inlet side is suggested to indicate the relative position of the front flange and the rear cover to the body. Mark the bearing blocks also on the inlet side and the gears position relative to each other. DO NOT scribe internal surfaces.

PROCEDURE

1. Clamp the unit.

Clamp the unit in a vice from the flange side.

Make sure the vice jaws are clean and have smooth surfaces to prevent damage to the pump.

- **NOTE:** Clamping the pump on the body is not recommended because serious damage to the surfaces, on which the ports are located, may occur.
 - 2. Remove capscrews. (Except Units with 03 Flange).

Use a 17 mm socket wrench and loosen the four capscrews on the cover. Next completely unscrew the capscrews and remove them.

Inspect the threads of the capscrews for damage.

Remove socket head capscrews. (03 Flange or Multiple 3. Pump Stages Only).

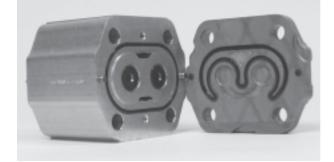
Using a 4 mm internal hex wrench, loosen and remove the two small socket screws placed in the center of the cover. Repeat the same operation for the corresponding screws on the rear flange.

06 Flange (first stage of multiple pump)

4. Remove front flange.

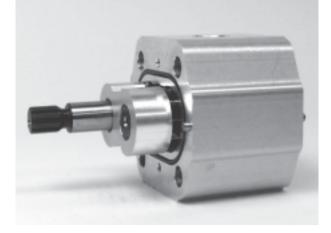
> Place the pump on the table and slowly remove the front flange.

> Be careful not to damage the shaft seal when removing the flange. Avoid contact of the shaft seal lips with keyway edges (in tapered and parallel shafts) or splined shaft teeth.


Inspect the front flange and seal area.

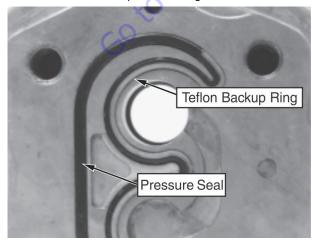
Clean with shop solvent, dry, and set aside.

Remove rear cover.


Remover rear cover. Clean with shop solvent, dry, and set aside. Visually inspect rear cover and seal area.

6. Remove bearing blocks and gears.

Place the pump on its side and carefully remove the bearing block and gear set. To accomplish this, hold the pump body and push with your fingers on the rear bearing block.


Mark the relative positions of the gear mesh (drive gear tooth to idler gear tooth) and the bearing blocks to the body so they can be reas?sembled in the same position.

7. Remove pressure seals.

Check the seal quality. Replacement is recommended whenever there are burrs, evidence of extrusion, or marks caused by overheating. If the seals need to be replaced, carefully remove them from the flange cover, beginning with the backup ring and then the pressure seal.

Do not use tools with sharp edges to remove the seals, as damage to the cover can result.

After removal, dispose of damaged seals.

8. Remove Outer O-Ring Seal

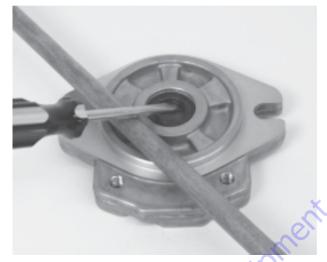
Check the quality of this seal. If necessary, replace it. Follow the same removal recommenda?tions given in step 7.

After removal, discard the damaged seal.

Do not use tools with sharp edges to remove the seals, as damage to the cover can result.

Remove the snap ring.

Place the flange on the work surface. Using internal snap ring pliers, remove the snap ring.


10. Remove the shaft seal.

Check the shaft seal quality and remove if necessary.

To remove, pry the bottom of the shaft seal and force it out while rotating the flange to lift it out evenly.

Do not use the flange pilot to gain leverage, damage may result. Use a plastic rod or wooden dowel as a fulcrum.

After removal, dispose of damaged seal.

Assembly

1. Prepare the seals.

Have the entire seal kit available.

Lightly coat all seals with seal grease. The grease is needed to adhere the seals to their grooves.

Do not install dry seals.

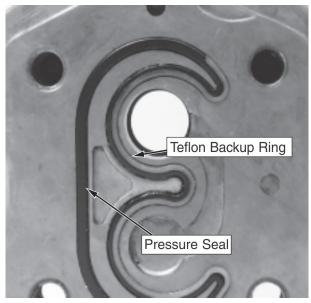
2. Install shaft seal into front flange.


Prepare the flange and shaft seal by lightly lubricating with grease.

Seat the seal in the flange by hand. Then, using the shaft seal installation tool, press the seal until the tool stops on the flange. This will insure the seal is inserted to the proper depth.

3. Install snap ring.

Install the snap ring using internal snap ring pliers. Ensure the snap ring fits securely in its groove. This is necessary to retain the shaft seal.



4. Install pressure seals.

Prepare the pressure seals by lightly lubricating them with grease.

Install pressure seals into the grooves on the front flange and rear cover. Then install the teflon backup ring.

Ensure that the seals are located in the grooves, as shown.

6. Install outer seal.

Prepare the outer seal by lightly lubricating with grease.

Install outer seals in the grooves on both sides of the body.

5. Prepare the body.

Clean the body.

Inspect the internal and mating surfaces. Ensure the surfaces are free of burrs and scratches. Check both the bearing block mating surface and the cut-in path. The cut-in path should be no deeper than 0.1 mm (0.004 in).

7. Prepare the gears.

THE GEAR SURFACES ARE SUPER-FINISHED. RESIDUE ON HANDS AND FIN-GERS MAY BE CORROSIVE TO THIS SURFACE. DO NOT TOUCH.

Carefully clean the two gears. If the gears are new, wash them with shop solvent to remove any anticorrosive grease on the surfaces.

Inspect the journals and the flat faces on the top and bottom of the gears. Ensure these surfaces are free from burrs or scratches. If scratches or burrs are found, clean them with a flat stone and/or very fine emery paper. Rewash the gears after this operation. 8. Prepare the bearing blocks.

Clean the two bearing blocks.

Inspect the flat surfaces of the bearing blocks for burrs or scratches on the edges. If necessary, remove burrs with very fine emery paper. Then rewash the bearings.

Inspect the DU bushings for wear. There should be no bronze showing.

Using clean hydraulic oil, lubricate the internal and external surfaces of the bearing blocks.

GotoDisc

9. Assemble the bearing blocks and gears.

Lubricate the journals and the gear faces.

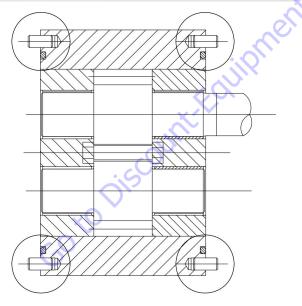
Assemble the bearing blocks and gears. Ensure that the recessed bearing faces are installed adjacent to the gear faces. Align all assembly marks made during disassembly. Ensure the front and rear bearing blocks occupy the same location with respect to the housing as before disassembly. Ensure that the relative position of the gear mesh is maintained as before disassembly. Misalignment of the gear teeth may increase operating noise.

11. Clean the mating surfaces.

Remove any excess lubrication and grease from the mating surfaces of the pump body. Ensure that these surfaces are dry and free of contamination before moving on to the next step.

10. Install the gear block assembly.


Install the bearing block and gear assembly into the body cavity. Align the assembly marks to ensure that the gear block assembly is installed with the same orientation as before disassembly.



12. Install the dowel pins.

Install four 5 mm dowel pins into the proper cavities on both sides of the body (refer to the illustration). Swab the pins with assembly grease or petroleum jelly to retain them during assembly.

Do not install dowel pins to the rear cover or flange, as one of them may drop inside the pump during assembly.

13. Clean the mating surfaces.

Remove any excess lubrication and grease from the mating surfaces of the front flange and rear cover. Ensure that these surfaces are dry and free of contamination before moving on to the next step.

Ensure the pressure seals are seated properly after this operation.

14. Install Rear Cover.

Mount the cover on the body. Ensure the arrow on the back is oriented properly. The arrow should be In the same direction as the flow.

Ensure that all the pressure seals stay in place during this operation.

15. Prepare pump for front flange assembly.

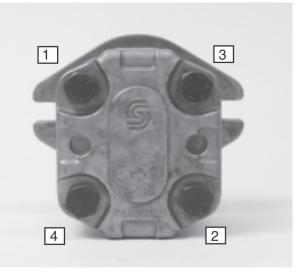
Place the pump with the rear cover downwards.

Ensure that the assembly marks on the bearing block / body are properly aligned.

16. Install the front flange.

Install a protective sleeve over the shaft. The sleeve is used to protect the shaft seal from damage by the shaft splines / keyway during front flange assembly.

Install the flange onto the body, then remove the protective sleeve. Ensure that the seals remain seated in their grooves during this operation.



17. Torque sequence.

When assembling units with 01 flange and short coupled tandems, wash the capscrews and apply Medium Strength Threadlocking Compound or equivalent thread lock compound to the threads before assembly.

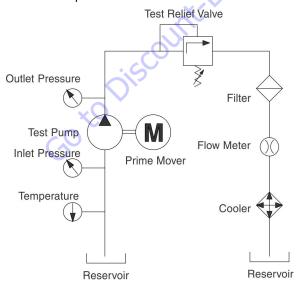
Install capscrews. While observing the torque sequence shown, pre tighten the capscrews. Then, using a torque wrench, tighten them to the proper torque.

Torque 44-54 Nm (32-40 ft.lbs.).

18. Install socket head capscrews. (03 flange and first stage of multiple).

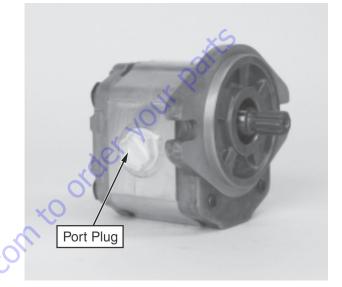
Using a 4 mm internal hex wrench, install the socket head capscrews to the front flange and rear cover.

Torque 2.5-3.4 Nm (22-30 ft.lbs.).


If used, install new o-ring to flange pilot.

19. Testing

After pump has been disassembled and reassembled, it is suggested that the pump be run in and tested on an appropriate test stand. This is done to verify the volumetric efficiency and the integrity of the unit.


Test specifications and procedure are given in Testing the Pump.

20. Prepare the unit for shipment or storage.

Clean the exterior of the pump and install the following:

- a. Port Plugs
- **b.** Key (Cl and CO shafts)
- c. Shaft protective cap (CI and CO shafts)
- d. Nut and washer (CO shaft)

Trouble Shooting

Low or No Flow From Gear Pump		
ltem	Description	Action
1. Check oil level in reservoir.	Description Insufficient oil to supply gear pump.	Fill reservoir to proper level.
2. Check input spline condition.	Input shaft broken or stripped.	Repair or replace gear pump.
3. Check pressure at pump inlet. Recommended inlet pres- sure: 0.8 to 3.0 bar absolute. 0.6 Minimum at cold start.	Clogged suction filter or inlet screen.	Replace filter or clean suction screen.
4. Check condition of gear faces and bearing blocks.	Scored bearing block and gear faces will reduce pump efficiency.	Repair or replace gear pump.
5. Checkbushings.	Overpressure of gear pump will cause idler gear bushing to fail.	Repair or replace gearpump.
Excessive Noise		
ltem	Description	Action
1. Check oil level in reservoir.	Excessive air will cause cavitation sound.	Fill reservoir to proper level .
2. Check inlet line for leaks.	Excessive air will cause cavitation sound.	Repair inlet line.
3. Check pressure at pump inlet. Recommended inlet pres- sure: 0.8 to 3.0 bar absolute. 0.6 Minimum at cold start.	Lower than normal inlet pressure causes excessive pump noise.	Return inlet pressure to recommended levels.
External Leakage	×.	
ltem	Description	Action
1. Check for pinched o-rings or backup ring seal.	Pinched seal will allow leakage.	Replace pinched seal.
2. Checkpressure seals.	Damage to pressure seals is typically caused by reduced stack-up in the pump assembly. This may be due to under- torqued assembly fasteners, or more commonly is attributed to excessive wear on the bearing blocks. Reduced stack-up will affect seal efficiency possibly to the point of seal extrusion.	Inspect condition of bearing blocks. If they are found to be worn, repair or replace the pump. If bearing blocks are not worn, replace pressure seals and re- torque pump assembly fasteners.
Go to Disco	\sim	

Table 5-43. Troubleshooting

5.9 DRIVE & FUNCTION PUMP START UP PROCEDURES

Start-Up Procedure

The Boom Lift utilizes a Triple Combination Pump coupled to the Deutz diesel engine. The pumps are connected in-line to each other as follows:

- 1. The front hydrostatic transmission pump, or drive pump, is coupled directly to the diesel engine and provides oil flow to operate the machine's right side wheels.
- 2. The middle hydrostatic transmission pump, or drive pump, is coupled to the back of the front pump and provides oil flow to operate the machine's left side wheels.
- **3.** The third or rear pump is the function pump. It is coupled to the back of the middle pump and provides oil flow to operate the boom, axle, steer and platform functions.

The transmission pumps share some common connections. Each pumps charge oil suction ports are connected by steel tubing, the charge pumps discharge oil flows are connected and flow to a common charge pump inline oil filter, cleaned & filtered oil flows back to the transmission pumps "G" ports. The pumps case drain ports are connected (T1 & T2), oil flow from the middle pumps T1 port also provides flows to the oil cooler. The charge pumps oil pressure is regulated by a single boost oil pressure relief valve installed in the middle pump. The front pump has an orifice cartridge (0.047" diameter) installed in place of a charge oil pressure relief cartridge. This insures that only one valve controls charge pressure & provides an amount of charge oil flow to the front pump's case to insure flushing & removal of hot oil.

Each pump has its own separate electrical proportional directional control valve to control oil flow and direction. The signals or command values to each pump are similar except when steering. During steering and propel of the machine the pump supplying oil to the "inside turning radius" has a command less than the pump supplying oil flow to the "outside turning radius" pump.

"Posi-Traction" control, front to rear on a given side of the machine, is accomplished by a flow divider/combiner cartridge installed in the Traction Control Manifold. There is a flow divider/combiner for each side. Each flow divider/combiner also has a "bleed orifice" to limit the amount of flow splitting or combining. The middle transmission pump also supplies oil to a hot oil flushing valve cartridge, #120, in the Traction Control Manifold. This cartridge provides a means to obtain brake release oil pressure. The brake release pressure is controlled by a pressure relief valve cartridge # 130 and a solenoid operated brake release directional control cartridge, #170, also located in the Traction Control Manifold. This is important to note as the brake release oil pressure relief valve. If the brake release pressure is set too low, brake drag and pump control will be affected. If set too high, damage to the wheel drive parking brakes could result. Prior to start, connect appropriate pressure gauges to the unit.

FOR THE START-UP OF NEW OR OVERHAULED INSTALLA-TIONS:

- 1. Insure all electrical checks have been performed & the machine is set up correctly with the JLG Analyzer.
- 2. Insure the machine has all four wheels jacked & blocked off the ground per JLG procedures.
- **3.** Insure the triple pump assembly is installed and connected correctly per the hydraulic circuit diagram.
- **4.** Disconnect the electrical connector from the diesel's throttle actuator, to prevent engine start.
- 5. Crank the engine until charge pressure reaches 50 psi or more.
- 6. Re-connect throttle actuator electrical connector and start engine. Allow engine to run at idle speed only for at least 5 minutes. This will allow the hydrostatic system to filled.
- 7. Listen for any abnormal noises.
- 8. Check for oil leaks.
- 9. Check charge pressure (500 psi +50psi, 0 psi [34.4 bar +3.4 bar, 0 bar]). Pressure can be measured a pump ports Ma & Mb or by "teeing" into the inlet for the charge oil filter. Charge pressure is checked with the joy-stick in neutral. A 0-1000 psi (0-70 bar) pressure gauge must be used. (If pressure gauges were installed in Ma & Mb to check charge pressure, disconnect the gauges installed in Ma & Mb, as they will be damaged if loop pressure rises above 1000 psi [34.4 bar].)

- 10. Operate the drive system in the "turtle mode", forward and reverse.
- 11. De-aerate the system by bleeding fluid from the Ma & Mb ports.
- 12. Switch the drive mode speed control from "turtle" to "rabbit". Gradually increase drive speed forward & reverse, still with no load - wheels off the ground.
- 13. With the joystick in neutral, check for creep in neutral. If evident, most likely dirt is present in the proportional pump control, an incorrect electrical signal is present on the pump's electrical control(s) or the control was not centered properly when overhauled. See service manual for centering instructions.
- 14. Check that the controls are connected so that the transmissions operate in the correct direction related to control input.
- **15.** Continue to monitor all pressure gauges & correct any irregularities.
- Ma Ma contro Ma contro **16.** Remove the brake coil (leaving the electrical connection intact) from the brake release solenoid cartridge located on the Traction Manifold. This disables the machine's ability to release the brakes! Stroke the transmission pumps slightly (less than 20%) and check the setting of the high pressure cross port relief valves. Setting should be 5000 psi +50 psi, - 0 psi (344.7 bar +3.4 bar, -0 bar). Install 0-6000 psi (0 - 415 bar) gauges on Pump ports Ma & Mb.

- 17. Check oil level & temperature.
- 18. Remove and inspect charge pressure oil filter, replace with new element.
- 19. Operate the transmission under no load conditions for about 15 minutes to stabilize the temperature and remove any residual air from the fluid.
- Set the machine back on the ground. Operate the trans-20. missions under full and normal conditions.
- 21. Erratic operation may indicate there is still air trapped in the system. By working the pump controls forward and reverse the remaining air can be eliminated. The system is free of air when all functions can be operated smoothly and when the oil in the reservoir is no longer aerated. (Usually less than one hour of operation)
- **NOTE:** If the transmissions do not perform correctly after following the pre-start & start-up procedures, refer to the relevant sections of the trouble-shooting procedures.

5.10 HYDRAULIC SCHEMATIC

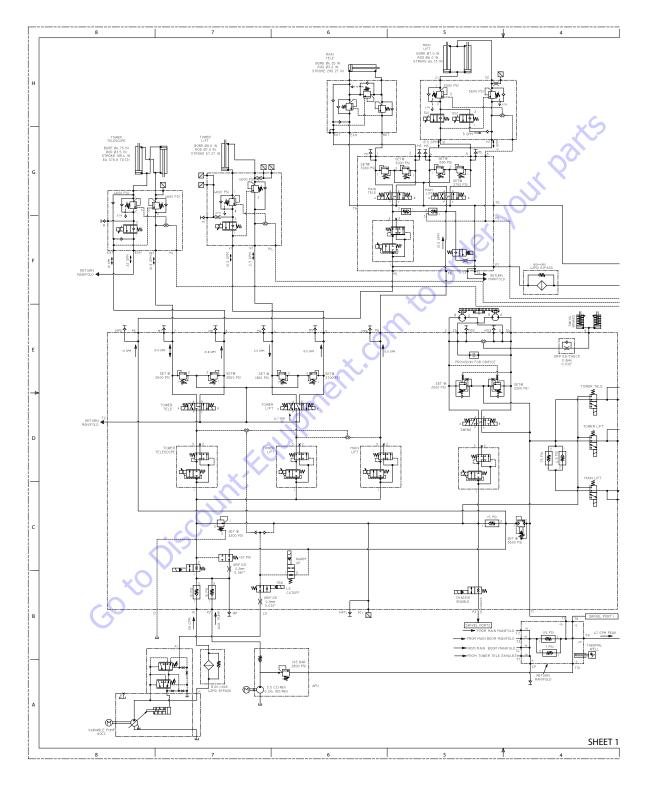


Figure 5-141. Hydraulic Schematic - Sheet 1 of 6

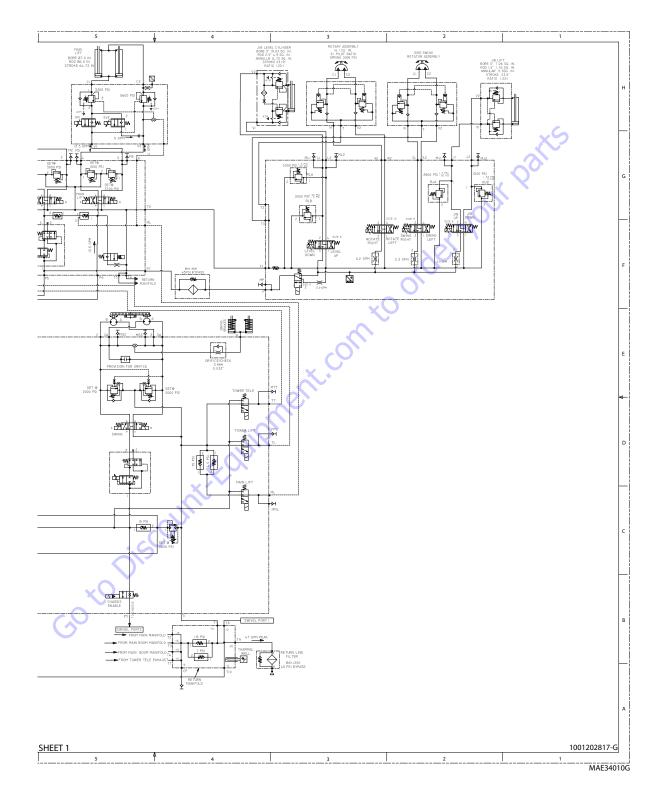


Figure 5-142. Hydraulic Schematic - Sheet 2 of 6

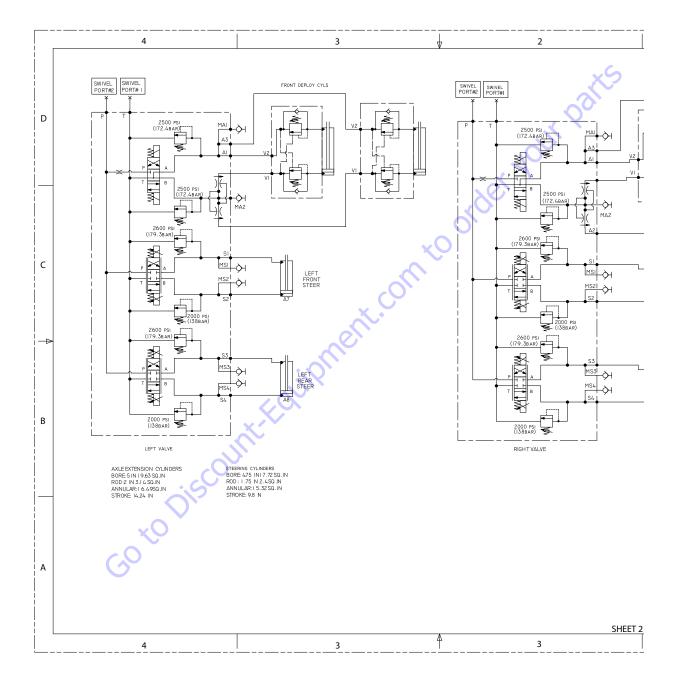


Figure 5-143. Hydraulic Schematic - Sheet 3 of 6

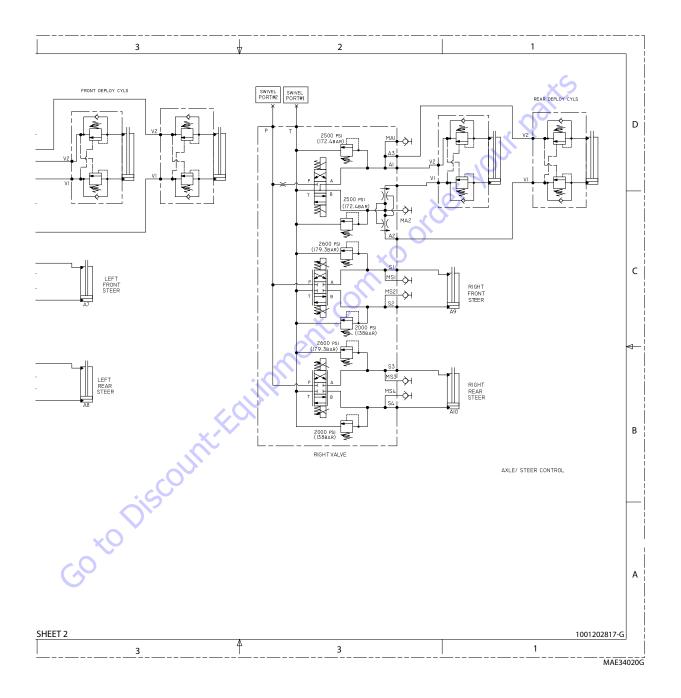


Figure 5-144. Hydraulic Schematic - Sheet 4 of 6

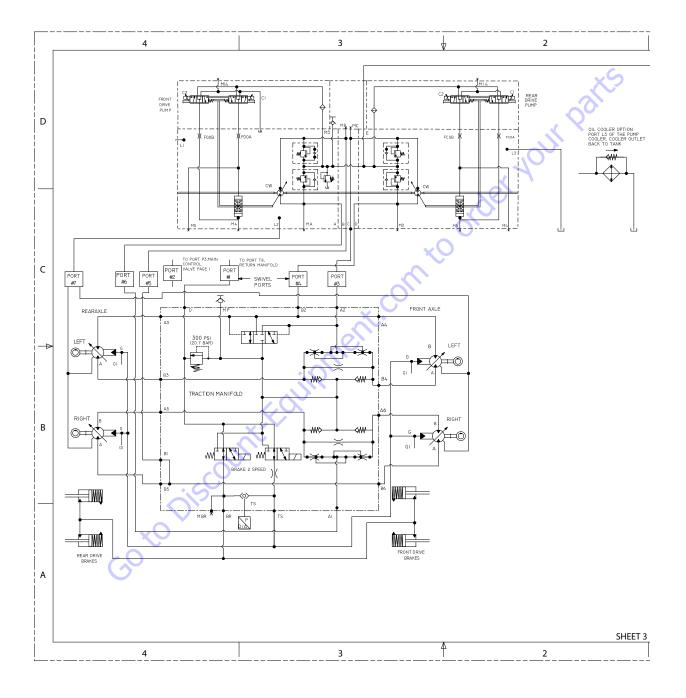


Figure 5-145. Hydraulic Schematic - Sheet 5 of 6

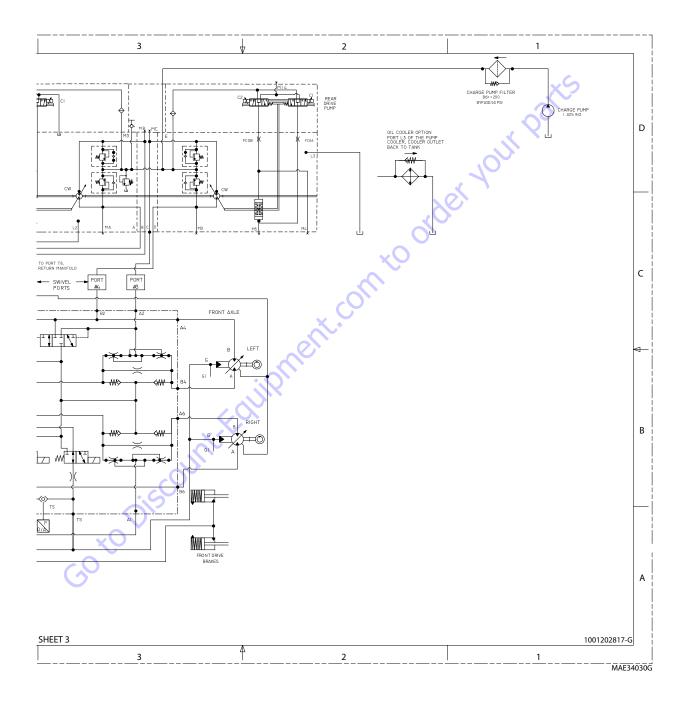


Figure 5-146. Hydraulic Schematic - Sheet 6 of 6

Search Website by Part Number Discount	Search Manual Library For Parts Manual & Lookup Part Numbers – Purchase or Request Quote	Can't Find Part or Manual? Request Help by Manufacturer, Model & Description
Equipment		Parts Order Form
	Search Manuals	1 Houter feld
		Granop
	Here you can perform a mart for your support offs park and a server managers in technique parts	Non-
Departs 2 p. street a system to response for commencial and industry systems in Western Western (1999)	*Soul	Caspan
Description of a merit region on an encoder for the method of dark and		NA-1
Where Somice Makes The Difference III Strategy and Strategy	* 9.0kt	
Energiese under Sone de Couper en space center Statement Statement Statement		DateTorio
Land Land Land Land Land Land Land Land	Sond Entri Sond Number	
Sala Merinakia - Shall ayraan ger - Bayle Gave	Fellution.	129/100
Chard Sector 4, or Minor 1 Sector 4, or Minor 1	Ender Part Non-Bert/Sell (separed)	
Survey States	Сситрёнь	C4Par
AND DE CARACTER IN CONCERNMENT	Enter Date store fam You Are Lacking For	carter
		~
	Salard C	Erel 1

Discount-Equipment.com is your online resource <u>for quality</u> parts & equipment. Florida: <u>561-964-4949</u> Outside Florida TOLL FREE: <u>877-690-3101</u>

Need parts?

Click on this link: http://www.discount-equipment.com/category/5443-parts/ and choose one of the options to help get the right parts and equipment you are looking for. Please have the machine model and serial number available in order to help us get you the correct parts. If you don't find the part on the website or on once of the online manuals, please fill out the request form and one of our experienced staff members will get back to you with a quote for the right part that your machine needs.

We sell worldwide for the brands: Genie, Terex, JLG, MultiQuip, Mikasa, Essick, Whiteman, Mayco, Toro Stone, Diamond Products, Generac Magnum, Airman, Haulotte, Barreto,
Power Blanket, Nifty Lift, Atlas Copco, Chicago Pneumatic, Allmand, Miller Curber, Skyjack, Lull, Skytrak, Tsurumi, Husquvarna Target, , Stow, Wacker, Sakai, Mi-T- M, Sullair, Basic, Dynapac, MBW, Weber, Bartell, Bennar Newman, Haulotte, Ditch Runner, Menegotti, Morrison, Contec, Buddy, Crown, Edco, Wyco, Bomag, Laymor, Barreto, EZ Trench, Bil-Jax, F.S. Curtis, Gehl Pavers, Heli, Honda, ICS/PowerGrit, IHI, Partner, Imer, Clipper, MMD, Koshin, Rice, CH&E, General Equipment, ,AMida, Coleman, NAC, Gradall, Square Shooter, Kent, Stanley, Tamco, Toku, Hatz, Kohler, Robin, Wisconsin, Northrock, Oztec, Toker TK, Rol-Air, Small Line, Wanco, Yanmar

SECTION 6. JLG CONTROL SYSTEM

6.1 INTRODUCTION

The JLG designed Control System is a 12 volt based control unit installed on the boom lift.

The JLG Control System has reduced the need for exposed terminal strips, diodes and trimpots and provides simplicity in viewing and adjusting the various personality settings for smooth control of: acceleration, deceleration, creep, min speed, and max.-speed for all boom, drive, and steering functions.

The main lift, swing, and drive are controlled by individual joysticks, with steering being controlled by a rocker switch built into the top the drive joystick. To activate Drive, Lift, and Swing simply pull up on the slide lock location on the joystick and move the handle into the direction desired.

The control system will control the voltage output to the valves and pump, as programmed for smooth operation and maximum cycle time. Ground control speeds for all boom functions can also be programmed into the control system.

The JLG Control System controller has a built in LED to indicate any faults. The system stores recent faults which may be accessed for troubleshooting. Optional equipment includes a soft touch system, head and tail lights, and ground alarm. These options may be added later but must be programmed into the control system when installed.

6.2 ELECTRICAL RETRIEVAL SYSTEM

NOTE: When operating in the Electrical Retrieval Mode, operate the functions a minimum of 2 seconds to ensure the JLG Control System can calculate the moment of the boom.

The Electrical Retrieval System provides a backup means of retrieving an elevated boom in the event of a fault related to any sensor used in the envelope control system (refer to Envelope Control System in Section 4). Although this system is continuously monitored, it is not active until a fault is detected within the envelope control system.

The electrical retrieval system uses pressure sensors located on the tower boom lift cylinder to determine the force on the cylinder. Due to the complex movements of an articulated boom, individual movements of the boom cannot be controlled based on this force. The control system uses this force reading to select one of two sequences of retrieving the boom in a manner necessary to maintain the stability and structural integrity of the machine. The two sequences of boom retrieval are determined based on the boom being closest to a position of forward stability concern or closest to a position of backward stability concern. Regardless of the sequence selected by the control system, the control system must recognize successive positions of the main and tower booms before continuing with the sequence.

While operating in this mode, the positions of the booms are determined by sensors not used by the primary envelope control system. These include the tower length switch, tower cylinder angle sensor, main boom angle switch, main boom length switch, and tower lift pressure transducers.

Operating in this mode will result in reduced function speeds, BCS warning light illumination, and restriction of functions. The platform alarm will sound and the BCS light will flash with attempts to operate restricted functions. When operating a permitted function, the BCS light will illuminate without flashing until the fault is cleared.

6.3 HYDRAULIC RETRIEVAL SYSTEM

The Hydraulic Retrieval System provides a backup means of retrieving elevated booms in the event of a recognized fault within the primary hydraulic control system related to the main lift, tower lift, main telescope, and tower telescope functions. The control system monitors the primary hydraulic control system for short and open circuits, and unexpected boom sensor response to command.

When a fault is detected, the control system automatically bypasses the appropriate hydraulic components and using alternative valves and control logic allows the operator to return the boom to the ground. In some cases the boom will be allowed to move only to the extent gravity is capable of assisting and in other cases the boom will be powered to allow complete retrieval to the transport position.

Although the envelope control system remains active during the hydraulic retrieval, the tower lift functionality will follow the tower path (refer to Tower Path Control System in Section 4). Rather than the normal combined movements of tower lift, tower telescope, and main lift, the tower lift movements will move in an alternating sequence between tower lift and tower telescope with the automatic main lift system (refer to Automatic Main Boom Control System in Section 4) disabled. Operating in this mode will result in reduced function speeds, BCS warning light illumination, and restriction of functions. The platform alarm will sound and the BCS light will flash with attempts to operate restricted functions.

6.4 JLG CONTROL SYSTEM ANALYZER KIT INSTRUCTIONS

NOTICE

WHEN INSTALLING A NEW POWER MODULE CONTROLLER ON THE MACHINE, IT WILL BE NECESSARY TO PROGRAM THE CONTROLLER FOR THE PROPER MACHINE CONFIGURATION, INCLUDING OPTIONS.

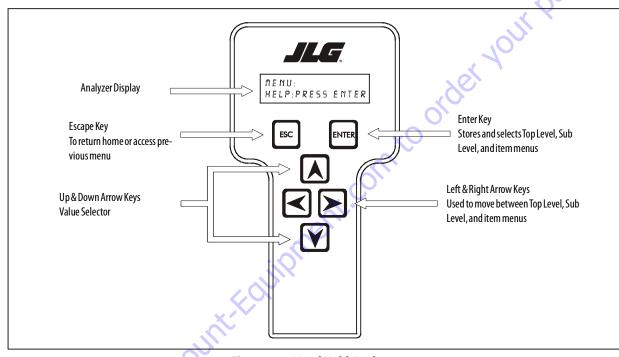
NOTICE

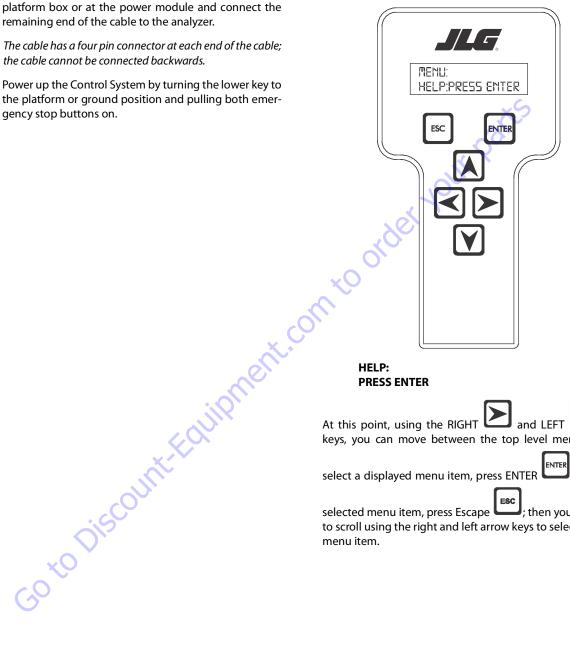
IT IS A GOOD PRACTICE TO AVOID PRESSURE-WASHING ELECTRICAL/ELEC-TRONIC COMPONENTS. SHOULD PRESSURE-WASHING BE UTILIZED TO WASH

30 to Dit

AREAS CONTAINING ELECTRICAL/ELECTRONIC COMPONENTS, JLG INDUS-TRIES, INC. RECOMMENDS A MAXIMUM PRESSURE OF 750 PSI (52 BAR) AT A MINIMUM DISTANCE OF 12 INCHES (30.5 CM) AWAY FROM THESE COMPO-NENTS. IF ELECTRICAL/ELECTRONIC COMPONENTS ARE SPRAYED, SPRAYING MUST NOT BE DIRECT AND BE FOR BRIEF TIME PERIODS TO AVOID HEAVY SAT-URATION.

The Control System may be accessed utilizing a custom designed, hand held analyzer (Analyzer Kit, JLG part no. 2901443) which will display two lines of information at a time, by scrolling through the program.




Figure 6-1. Hand Held Analyzer

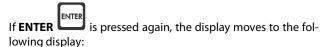
To Connect the JLG Control System Analyzer

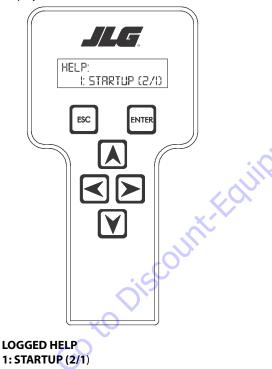
- 1. Connect the four pin end of the cable supplied with the analyzer, to the motor controller module located in the platform box or at the power module and connect the remaining end of the cable to the analyzer.
- **NOTE:** The cable has a four pin connector at each end of the cable; the cable cannot be connected backwards.
 - Power up the Control System by turning the lower key to 2. the platform or ground position and pulling both emergency stop buttons on.

Using the Analyzer

With the machine power on and the analyzer connected properly, the analyzer will display the following:

PRESS ENTER


At this point, using the RIGHT and LEFT arrow keys, you can move between the top level menu items. To


ENTER select a displayed menu item, press ENTER . To cancel a

ESC selected menu item, press Escape ; then you will be able to scroll using the right and left arrow keys to select a different The top level menus are as follows:

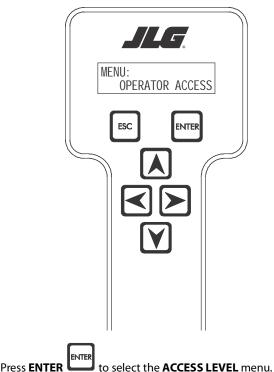
HELP DIAGNOSTICS ACTIVATE TEST ACCESS LEVEL PERSONALITIES MACHINE SETUP LEVEL VEHICLE (level 1 only) CALIBRATIONS (view only)

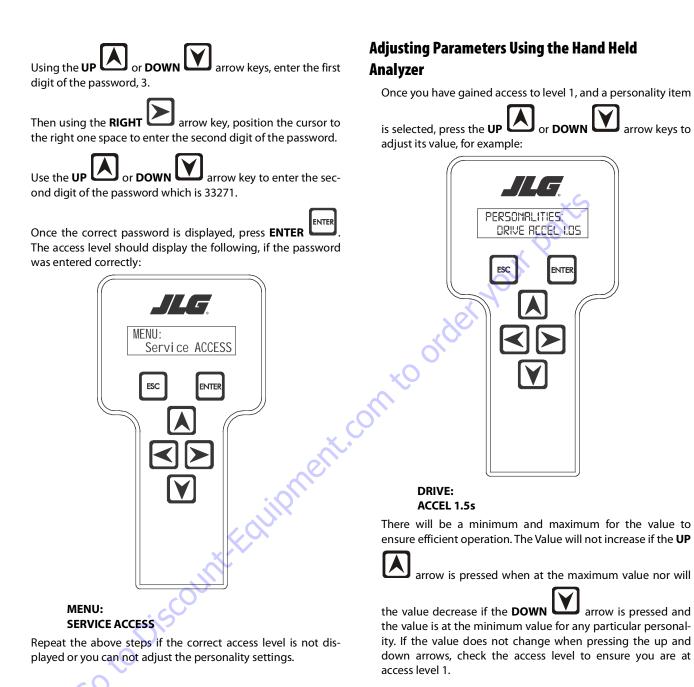
If you press ENTER, at the HELP: PRESS ENTER display, and a fault is present, the analyzer display will scroll the fault across the screen. If there was no fault detected, the display will read: HELP: EVERYTHING OK. If powered up at the ground station, the display will read: GROUND OK.

At this point, the analyzer will display the last fault the system has seen, if any are present. You may scroll through the fault logs to view what the last 25 faults were. Use the right and left arrow keys to scroll through the fault logs. To return to the

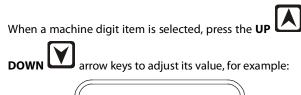
beginning, press **ESCAPE** two times. **STARTUP (2/1)** indicates a power up.

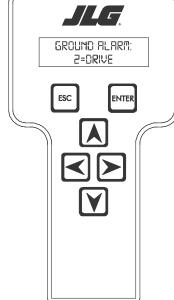
When a top level menu is selected, a new set of menu items may be offered: for example:


DRIVE
BOOM
SYSTEM
DATALOG
VERSIONS


Pressing **ENTER** with any of the above displayed menus, will display additional sub-menus within the selected menu. In some cases, such as **DRIVE**, the next level is the parameter or information to be changed. Refer to the flow chart for what menus are available within the top level menus. You may only view the personality settings for selected menus while in OPERATOR ACCESS. Remember, you may always cancel a

selected menu item by pressing the **ESCAPE** key.


Changing the Access Level of the Hand Held Analyzer


When the analyzer is first connected, you will be in Operator Access which enables you to only view most settings which cannot be changed until you enter a password to advance to a lower level. This ensures that a setting cannot be accidentally altered. To change the access level, the correct password must be entered. To enter the password, scroll to the **ACCESS LEVEL** menu. For example:

Machine Setup

GROUND ALARM: 2 = DRIVE

The effect of the machine digit value is displayed along with its value. The above display would be selected if the machine was equipped with a ground alarm and you wanted it to sound when driving. There are certain settings allowed to install optional features or select the machine model.

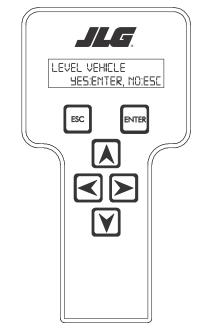
When selection the machine model to match the size of the machine, the personality settings will all default to the factory recommended setting.

- **NOTE:** Refer to Personality Ranges/Defaults for the recommended factory settings.
- **NOTE:** Password 33271 will give you access to level 1, which will permit you to change all machine personality settings.

There is a setting that JLG strongly recommends that you do not change. This setting is so noted below:

ELEVATION CUTBACK

CHANGING THIS SETTING MAY ADVERSELY AFFECT THE PERFORMANCE OF YOUR MACHINE.


NOTICE

ITS IS A GOOD PRACTICE TO AVOID PRESSURE-WASHING ELECTRICAL/ELEC-TRONIC COMPONENTS. SHOULD PRESSURE-WASHING BE UTILIZED TO WASH AREAS CONTAINING ELECTRICAL/ELECTRONIC COMPONENTS, JLG INDUSTRIES INC. RECOMMENDS A MAXIMUM PRESSURE OF 750 PSI (52 BAR) AT A MINI-MUM DISTANCE OF 12 INCHES (30.5CM) AWAY FROM THESE COMPONENTS. IF ELECTRICAL/ELECTRONIC COMPONENTS ARE SPRAYED, SPRAYING MUST NOT BE DIRECT AND BE FOR BRIEF TIME PERIODS TO AVOID HEAVY SATURATION.

Level Vehicle Description

DO NOT LEVEL VEHICLE EXCEPT ON A LEVEL SURFACE.

LEVEL VEHICLE YES:ENTER, NO:ESC

Not available at password level 2 ENTER confirms that vehicle is currently level, and zeroes the tilt sensor measurements

Ground Control Console Display Gauge - Machines using Diesel Exhaust Fluid (DEF)

(See Figure 6-5., Ground Control Console Display Gauge)

The Display Gauge shows engine hours, fuel level (if applicable), and Diagnostic Trouble Codes (DTCs) from both the JLG Control System and the engine control system. During machine start up, with no active DTCs in the control system, the splash screen will show for 3 seconds and then switch to main screen. If there is an active DTC while powering up the machine, the splash screen will show for 3 seconds, and then launch the Diagnostics Screen. The indicator lamp will light when there is an active DTC in the Fault Log.

The Engine Diagnostics Screen will show SPN (Suspect Parameter Number), FMI (Failure Mode Identifier), and Occurrence count information. Engine SPN text is not scrollable. If there is more than one engine trouble code, the operator must exit from the Engine DTC Screen to see other SPN and FMI information.

Figure 6-4. Engine Diagnostic Screen

The Diagnostic Screen will show active and inactive faults from the JLG Control System on the screen. An asterisk (*) will be displayed to show active faults.

Figure 6-3. Diagnostic Screen

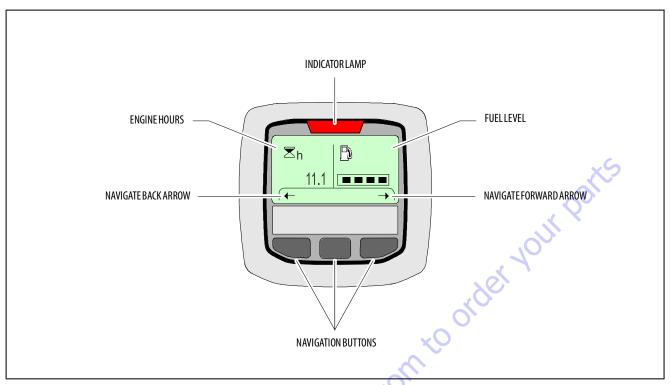
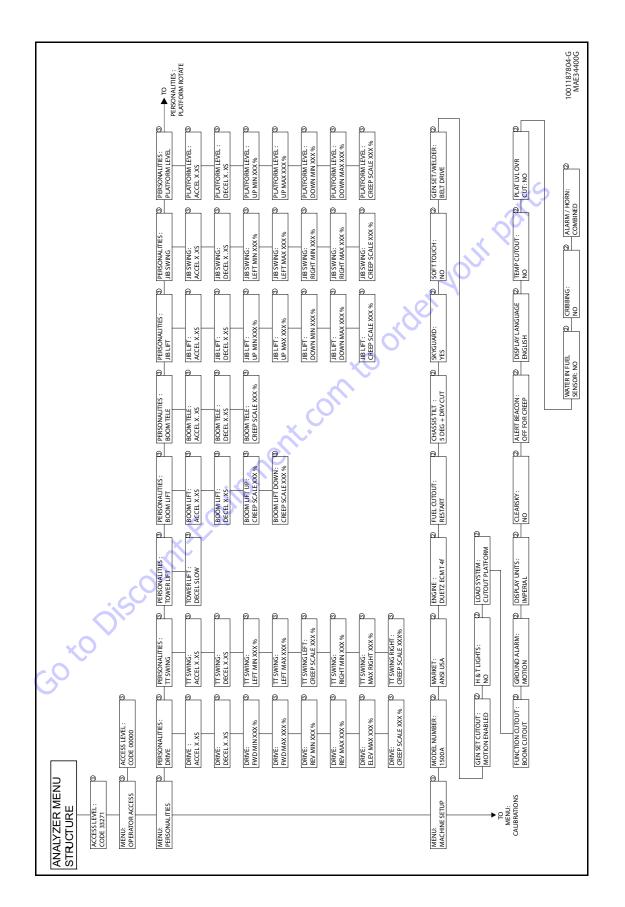


Figure 6-5. Ground Control Display Gauge

Table 6-1. Analyzer Abbreviations

ABBREVIATION	MEANING	
ACCEL	ACCELERATE	
ACT	ACTIVE	
A/D	ANALOG DIGITAL CONVERTER COUNT	
AMB.	AMBIENT	
ANG	ANGLE	
AUX	AUXILIARY	
BCS	BOOM CONTROL SYSTEM	
ВМ	BOOM	
BLAM	BOOM LENGTH ANGLE MODULE	
BR	BROKEN	
BRL	BARREL	
BSK	BASKET	
CAL	CALIBRATE or CALIBRATION	
СНК	CHECK	
CL	CLOSED	
СМ	CHASSIS MODULE	
CMD	COMMAND	
CNCT	CONNECT	
CNT	COUNT or CONNECT	6
CNTS	COUNTS	
CNTL	CONTROL	
CNTRL	CONTROL	
C/0	CUTOUT	
CONT(S)	CONTRACTOR(S)	
COOR	COORDINATED	
CRKPT	CRACK POINT	
CRP	CREEP	
CUT	СИТОИТ	
CYL	CYLINDER	
DECEL	DECELERATE	
D	DOWN	
DIR 💙	DIRECTIONAL	
DN CO	DOWN	
DWN	DOWN	
DEG.	DEGREE	
DOS	DRIVE ORIENTATION SYSTEM	
DMD	DEMAND	
DRV	DRIVE	
E	ERROR	
E&T	ELEVATED & TILTED	
ELEV	ELEVATION	
EN	ENABLE	
ENABLD	ENABLED	
LINAULU	EINADLED	


Table 6-1. Analyzer Abbreviations

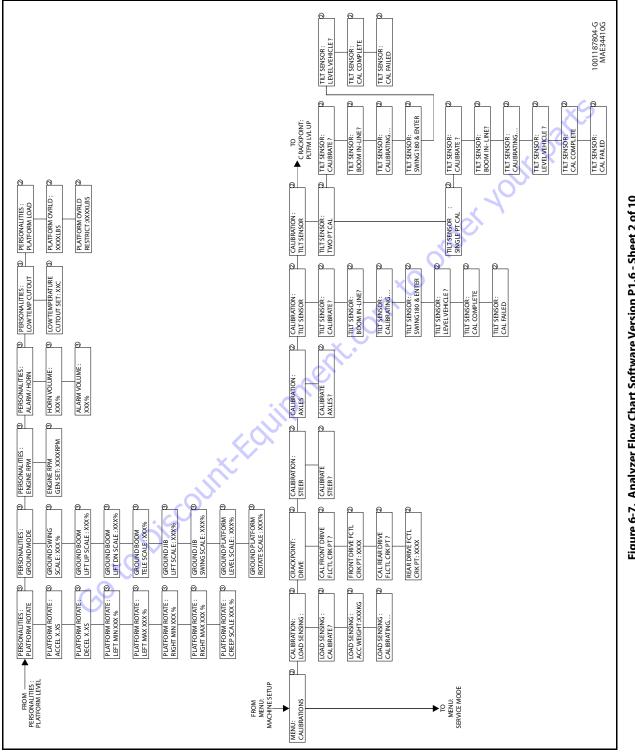
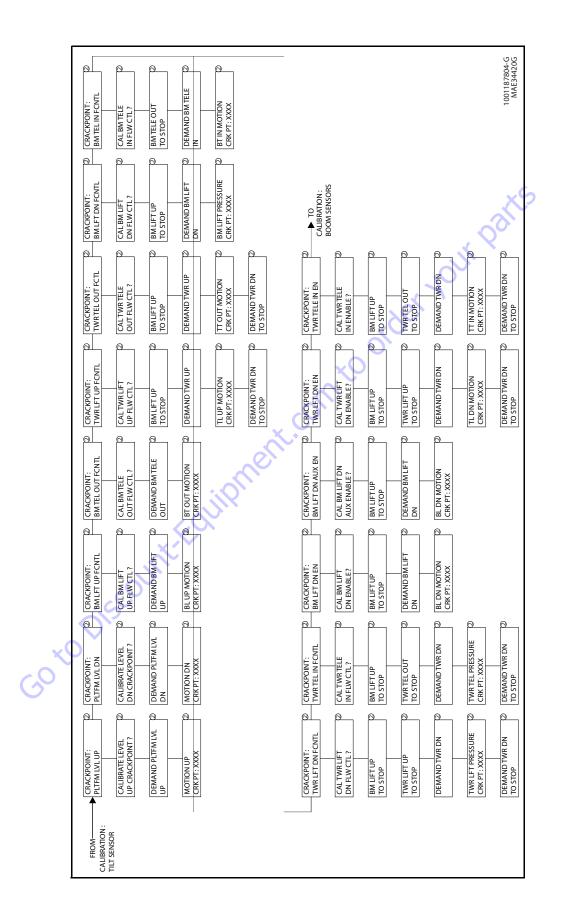
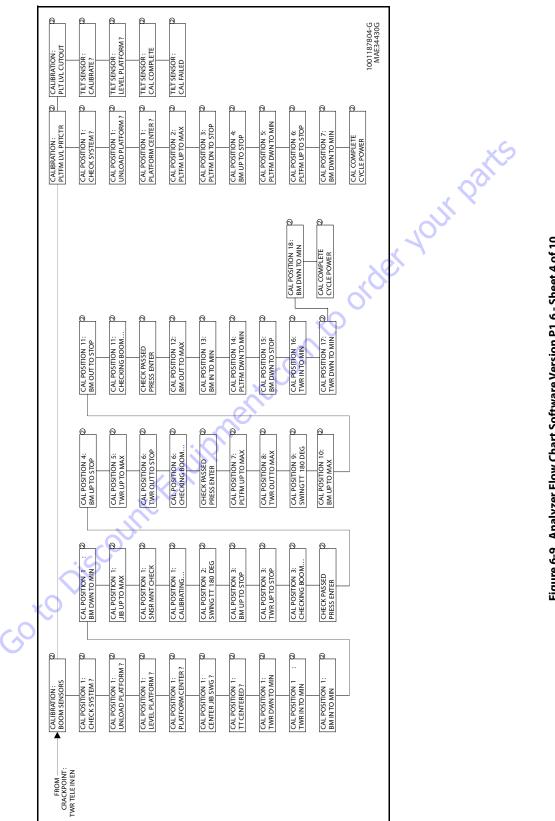
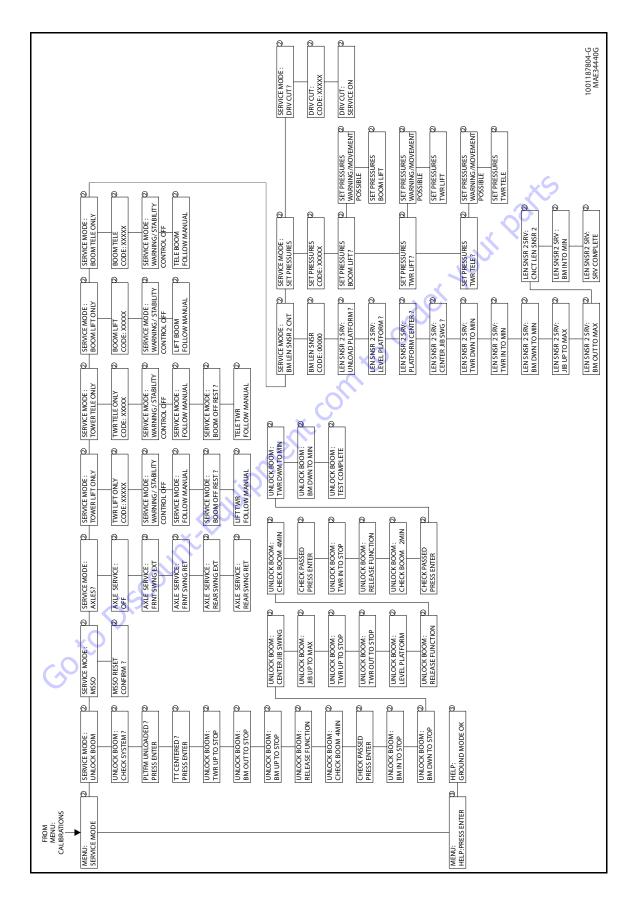

ABBREVIATION	MEANING	
ENG	ENGINE	
EXT	EXTEND	
F	FRONT	
FCNTL	FLOW CONTROL	
FL	FLOW	
FNT	FRONT	
FOR	FORWARD	
FWD	FORWARD	
FSW	FOOT SWITCH	
FUNC	FUNCTION	
G	GROUND	
GND	GROUND	
GRN	GREEN	
GM	GROUND MODULE	
Н	HOURS	
HW	HARDWARE	
HWFS	HARDWARE FAILSAFE	
n de la companya de l	IN or CURRENT	
JOY	JOYSTICK	
L	LEFT	
LB	POUND	
LEN	LENGTH	
LFT	LIFT	
LIM	LIMIT	
LT	LEFT	
LVL	LEVEL	
M	MINUTES	
MIN	MINIMUM	
MAX	MAXIMUM	
M	MAXIMUM MAIN	
MN	MAIN	
MNT	MAIN	
NO	NORMALLY OPEN or NO	
NC	NORMALLY CLOSED	
0	OUT	
0/C	OPENCIRCUIT	
OP	OPEN	
0/R	OVERRIDE OF OUTRIGGER	
0//R		
OSC	OVERRIDE	
OVRD	OVERRIDE	
P		
P	PLATFORM PRESSURE	

Table 6-1. Analyzer Abbreviations


ABBREVIATION	MEANING
PCV	PROPORTIONAL CONTROL VALVE
PLAT	PLATFORM
PLT	PLATFORM
PLTFM	PLATFORM
PM	PLATFORM MODULE
РОТ	POTENTIOMETER
PRES	PRESSURE
PRS	PRESSURE
PRTCTR	PROTRACTOR
РТ	POINT
R	REAR or RIGHT
REDUCTN	REDUCTION
REV	REVERSE or REVISION
RET	RETRACT
ROT.	ROTATE
RT	RIGHT
S/C	SHORT CIRCUIT
SEL	SELECTOR
SN	SERIALNUMBER
SNSR	SENSOR
SPD	SPEED
SRV	SERVICE
STOW	STOWED
STOWD	STOWED
STR	STEER
SW	SWITCH or SOFTWARE
SWG	SWING
TELE	TELESCOPE
TEMP	TEMPERATURE
TL	TOWERLIFT
TORQ.	TORQUE
TRN	TRANSPORT
П	TOWERTELESCOPE
Т/Т	TURNTABLE
T	TOWER
TURNTBL	TURNTABLE
TWR	TOWER
U	UPPER or UP
V	VOLT
VER	VERSION
VLV	VALVE
WIT	WITNESS
YEL	YELLOW


- Rent. com to order vour parts



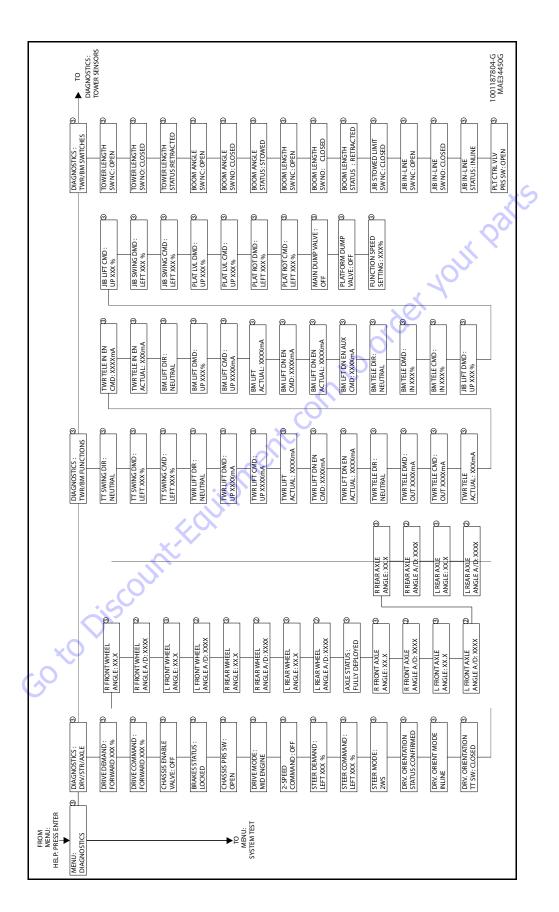
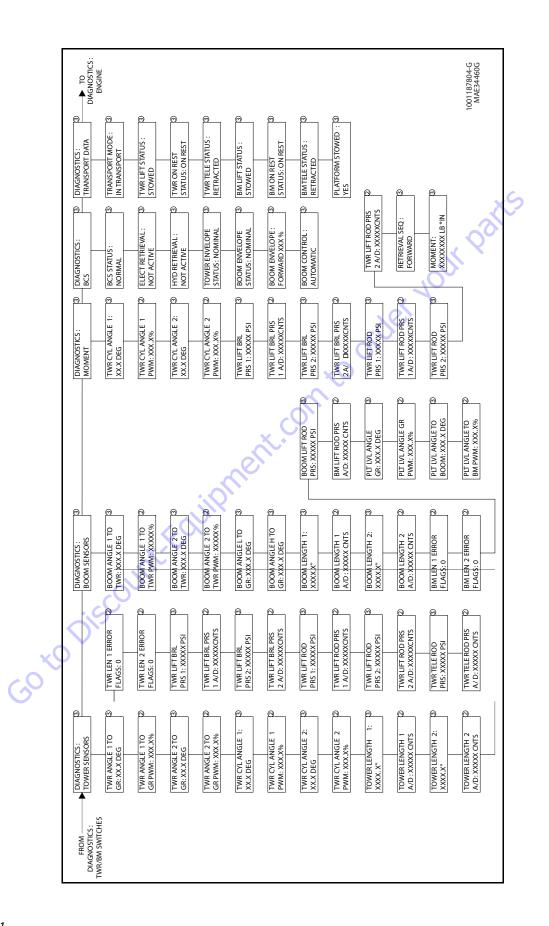
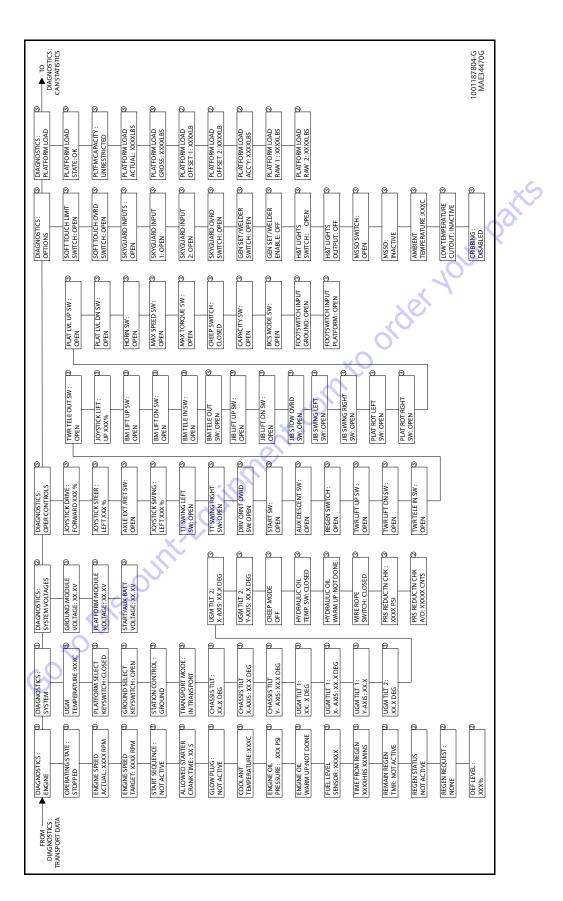
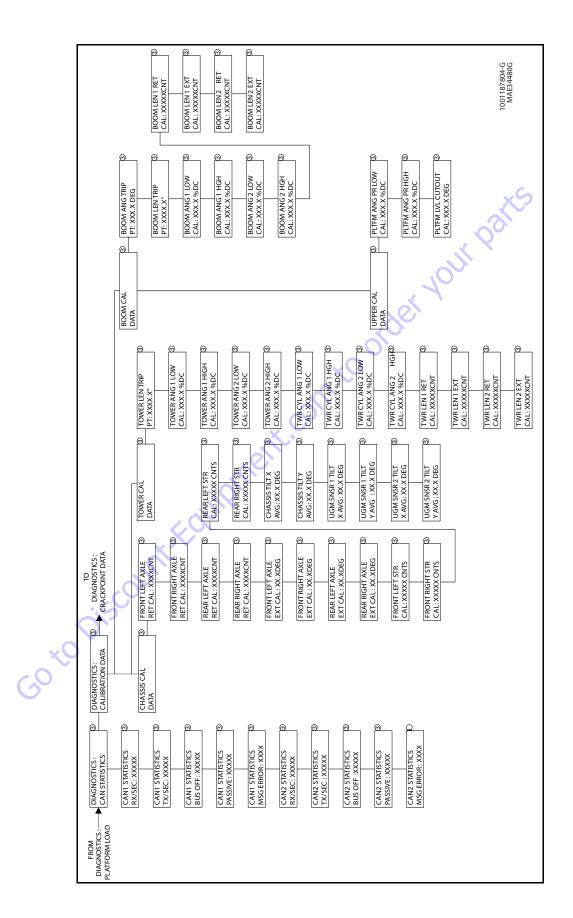
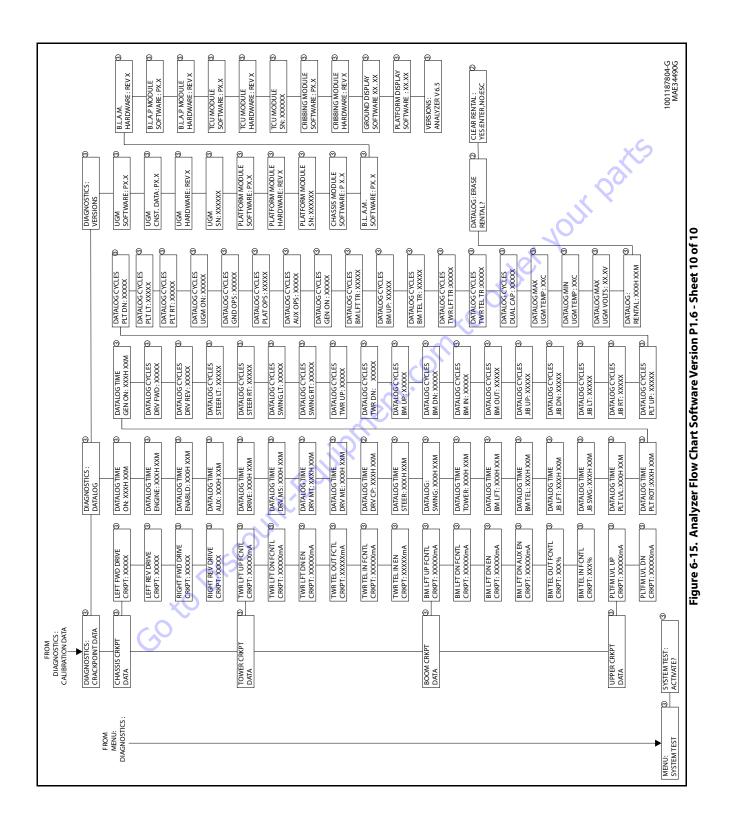
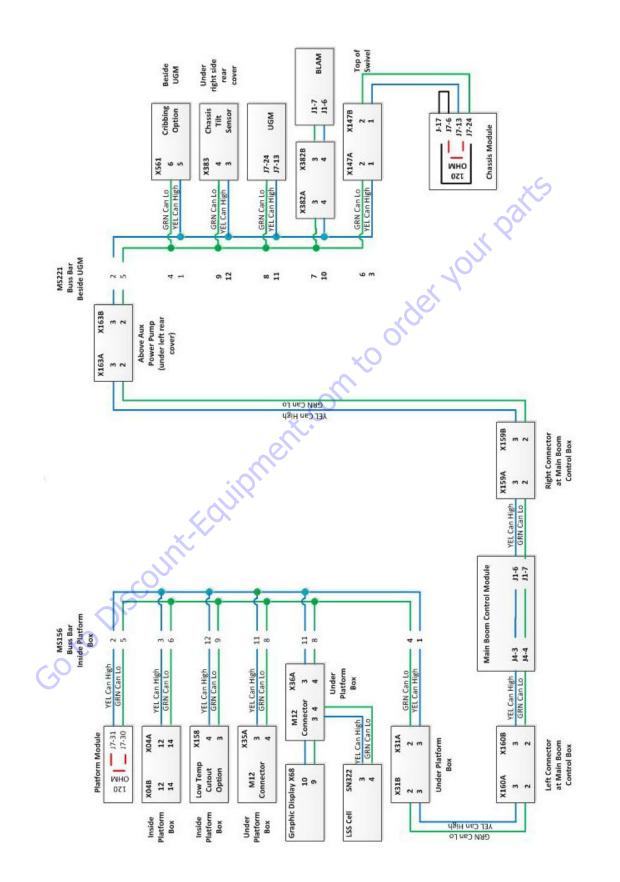
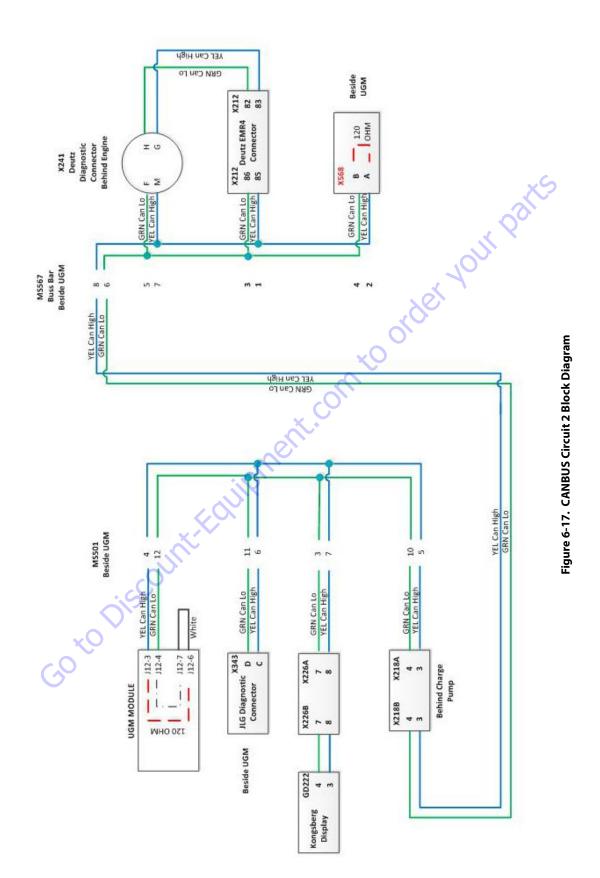



Figure 6-11. Analyzer Flow Chart Software Version P1.6 - Sheet 6 of 10


Figure 6-13. Analyzer Flow Chart Software Version P1.6 - Sheet 8 of 10

SECTION 6 - JLG CONTROL SYSTEM

31215061

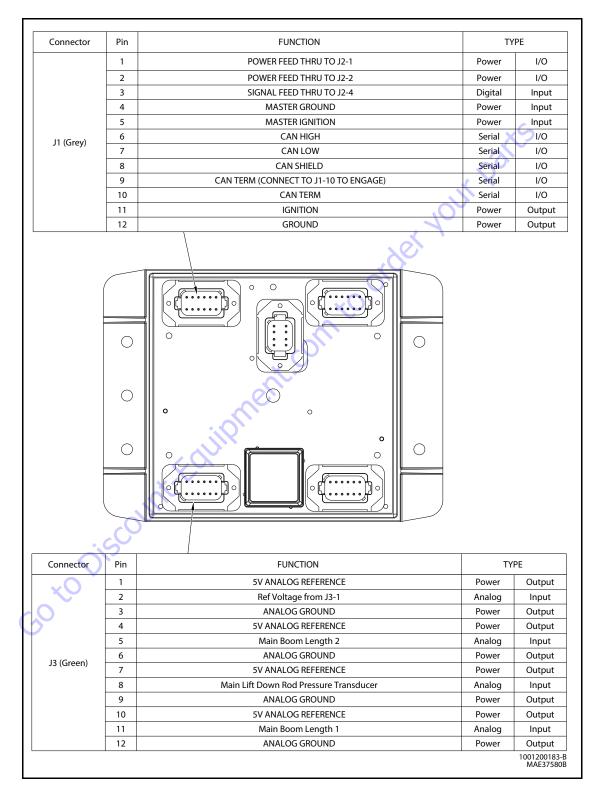


Figure 6-18. Boom Length Angle Pressure Module - Sheet 1 of 3

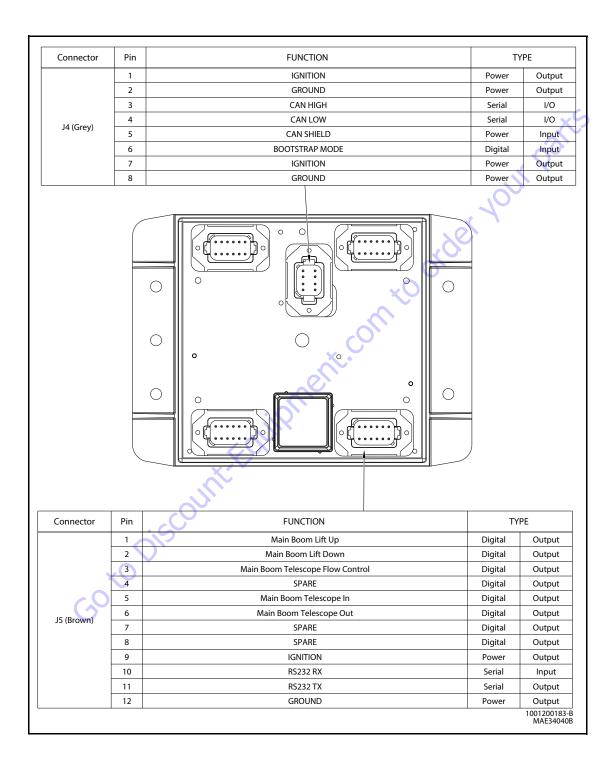


Figure 6-19. Boom Length Angle Pressure Module - Sheet 2 of 3

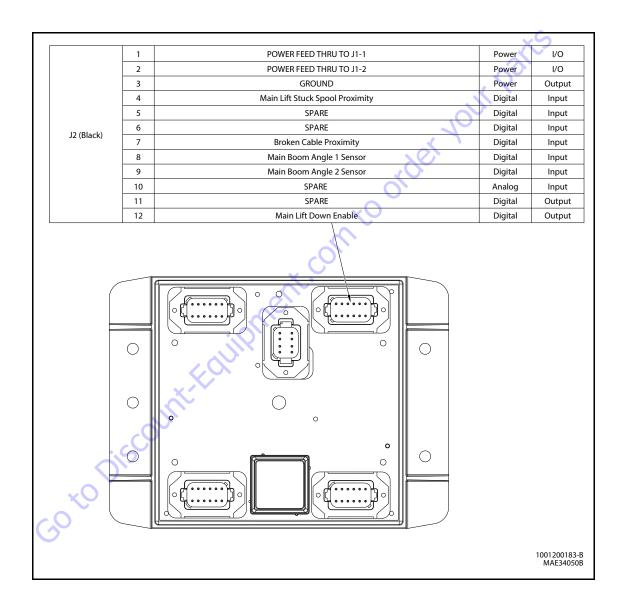


Figure 6-20. Boom Length Angle Pressure Module - Sheet 3 of 3

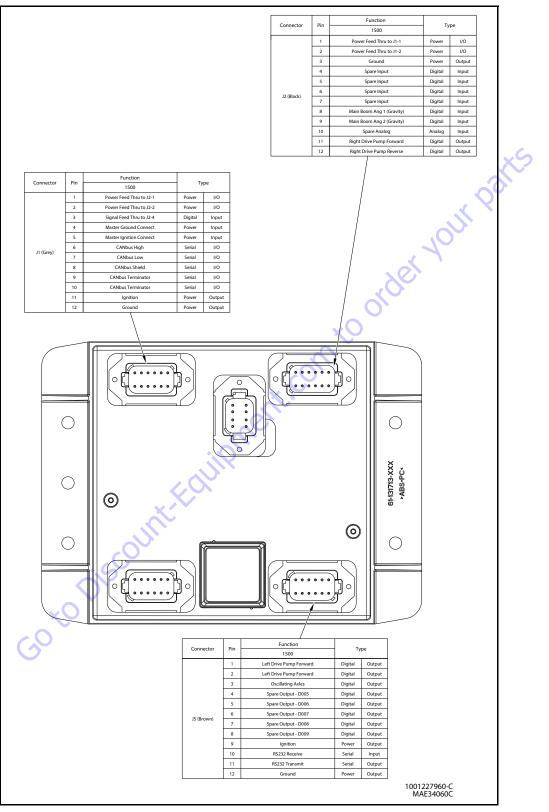


Figure 6-21. BLAM Control Module - Sheet 1 of 2

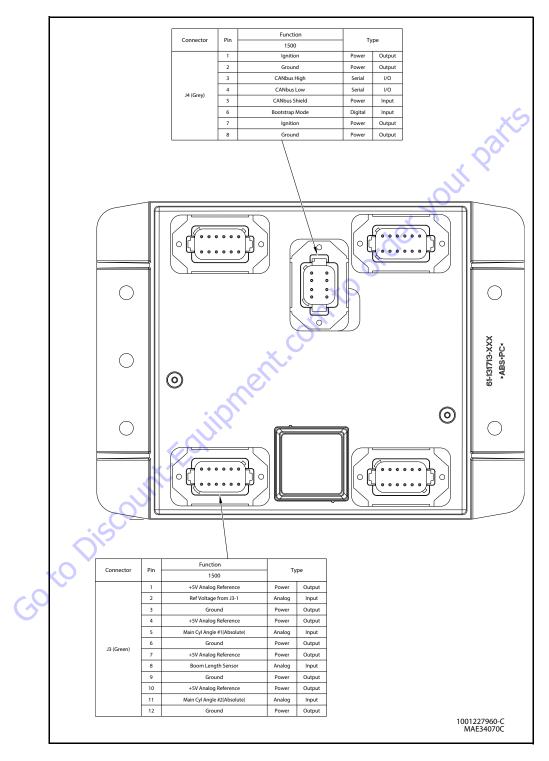


Figure 6-22. BLAM Control Module - Sheet 2 of 2

SECTION 6 - JLG CONTROL SYSTEM

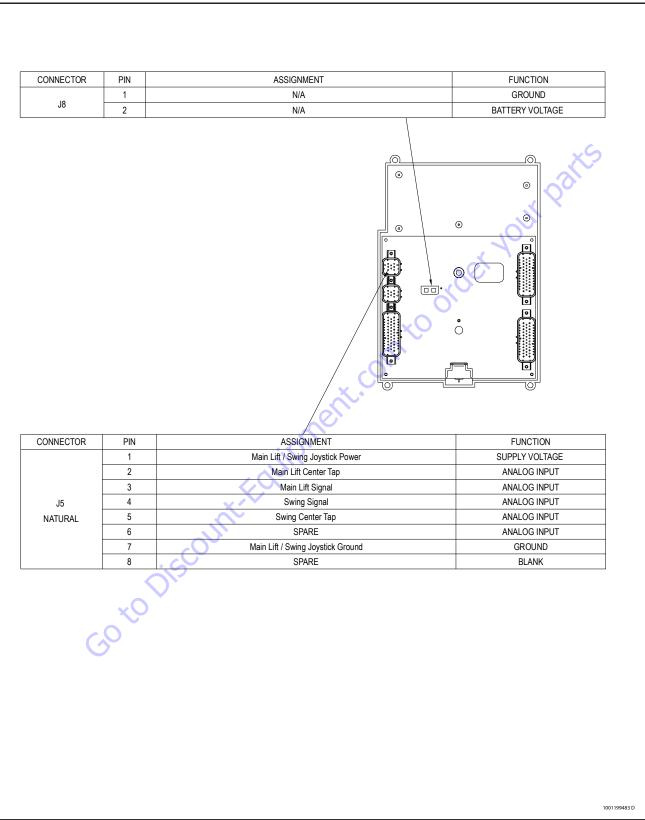


Figure 6-23. Platform Module - Sheet 1 of 5

Figure 6-24. Platform Module - Sheet 2 of 5

			_@
			•
			· · · · · · · · · · · · · · · · · · ·
			• • •
CONNECTOR	PIN	ASSIGNMENT	FUNCTION
	1	Ground Mode	GROUND MODE
	2	Platform EMS	PLATFORM EMS
	3	Platform EMS to Ground Board	PLATFORM MODE
	4	CAN Based PF Level Sensor Power	BATTERY VOLTAGE
	5	Platform Rotate Left Valve	ME DIGITAL OUTPUT
	6	Platform Rotate Right Valve	ME DIGITAL OUTPUT
	7	LSS and Display Power	BATTERY VOLTAGE
	8	Footswitch Disengage	DIGITAL INPUT
	9	Generator Switch	DIGITAL INPUT
	10	Spare	+7 REFERENCE VOLTAGE
	11	Jib Angle Sensor Power	+5V REFERENCE VOLTAGE
	12	Spare	+5V REFERENCE VOLTAGE
	13	Spare	ANALOG INPUT
	14	Display Ground/PF LVL SENSOR GND	GROUND
	15	Platform Level Up Valve	HS DIGITAL OUTPUT
	16	Platform Level Down Valve	HS DIGITAL OUTPUT
J7	17	Spare	HS DIGITAL INPUT
BLACK	18	Skyguard Input 1	HS DIGITAL INPUT
DENOR	19	Platform Alarm	LAMP OUTPUT
20 21 22 23 24 25 26 27		Platform Alarm Ground	GROUND
		Primary Platform Level Sensor Ground	GROUND
		Skyguard Ground	GROUND
		Spare	
		Spare	DIGITAL OUTPUT
		Jib Up Valve	ME DIGITAL OUTPUT
		Jib Down Valve	
		Jib Right Valve	
	28	Jib Left Valve	ME DIGITAL OUTPUT
	29	Valve Grounds	GROUND
	30	CAN Low	CAN LOW
	31	CAN High	CAN HIGH
	32	Spare	CAN SHIELD
33	აა	Backup Platform Level Sensor Ground	GROUND
	34	Not A Ground Has Internal PTC	GROUND

Figure 6-25. Platform Module - Sheet 3 of 5

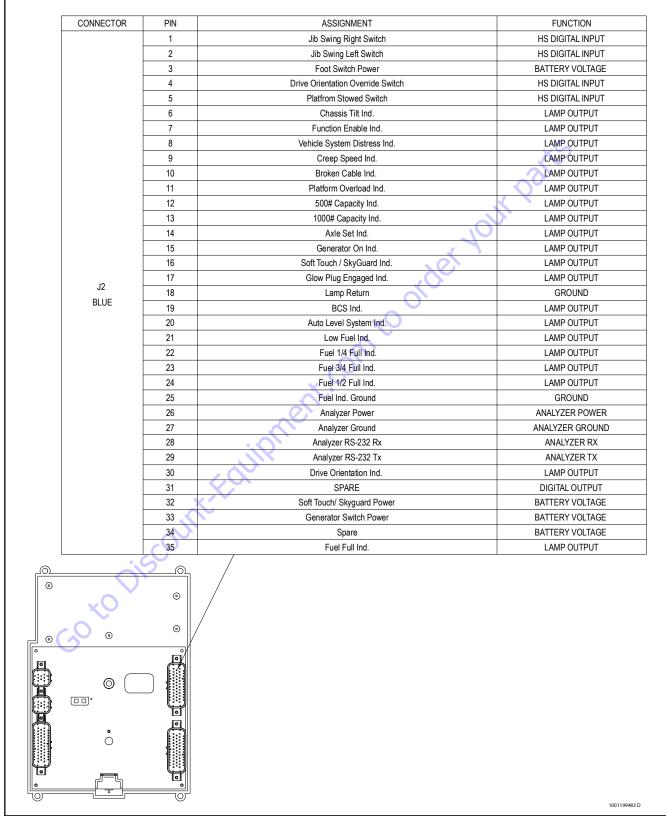


Figure 6-26. Platform Module - Sheet 4 of 5

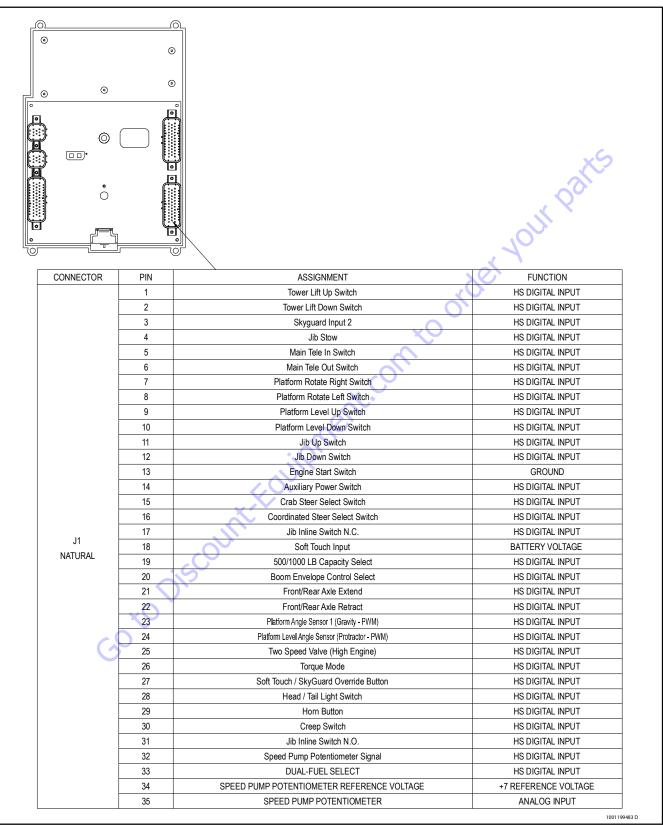


Figure 6-27. Platform Module - Sheet 5 of 5

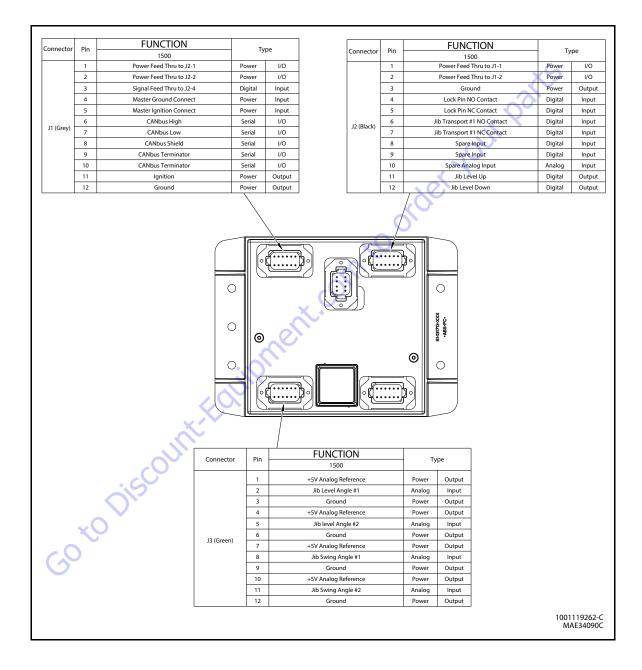


Figure 6-28. Jib Control Module - Sheet 1 of 2

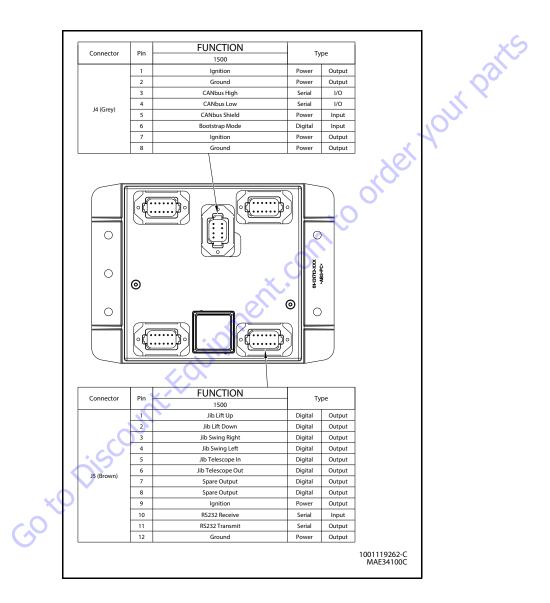


Figure 6-29. Jib Control Module - Sheet 2 of 2

nnector	Pin	Function		/pe	-
	1	Tower Lift Enable	DIGITAL	OUTPUT	4
	2	SPARE	DIGITAL	OUTPUT	-
	3	SPARE	DIGITAL	OUTPUT	-
	4	Tower Boom Transport Prox Ground	GROUND	INPUT	-
	5	SPARE	GROUND	INPUT	-
	6	Tower Telescope Enable	DIGITAL	OUTPUT	-
	7	Main Lift Down Override	DIGITAL	OUTPUT	-
	8	ECM Ground	GROUND	INPUT	_
	9	Generator Ground	GROUND	INPUT	
	10	SPARE	DIGITAL	OUTPUT	x S
	11	Start Request Signal	DIGITAL	OUTPUT	
	12	Main Telescope In Override	DIGITAL	OUTPUT	(O ⁻
	13	Auxiliary Power	DIGITAL	OUTPUT	
	14	Tower Lift Barrel Side Pressure Sensor Signal #2	ANALOG	INPUT	
	15	Engine Battery Voltage Diagnostics	ANALOG	INPUT	
	16	Tower Cylinder Angle Sensor #1	FREQUENCY	INPUT	
	17	Transducer Ground	GROUND	INPUT	1
J1	18	Transducer Ground	GROUND	INPUT]
(Natural)	19	SPARE	GROUND	INPUT	1
	20	Load Sense Cutoff Valve	DIGITAL	OUTPUT	1
	21	SPARE	DIGITAL	INPUT	1
	22	Generator/Welder (Option)	DIGITAL	OUTPUT	
	23	Parking Brake	DIGITAL	OUTPUT	-
	24	SPARE	N/C	N/C	-
	25	SPARE	SERIAL	1/0	-
	26	SPARE	SERIAL	1/0	-
	27	Tower Cylinder Angle 2 Ground	GROUND	INPUT	-
	28	Analyzer Power	VOLTAGE	OUTPUT	-
	29	Analyzer RS-232 Rx	SERIAL	INPUT	-
	30	Analyzer RS-232 Tx	SERIAL	OUTPUT	-
	31	Analyzer Ground	GROUND	INPUT	-
	32	Alternator Excitation	DIGITAL	OUTPUT	-
	33	Tower Cylinder Angle 1 Ground	GROUND	INPUT	-
	34	SPARE	DIGITAL	INPUT	-
	35	SPARE	DIGITAL	INPUT	-
Ço	ک ص	discount		، ⁽¹⁾ , ©	
					10011878 MAE34

Figure 6-30. UGM Module - Sheet 1 of 6

Connector	Pin	Function	Т	rpe
	1	SPARE	DIGITAL	OUTPUT
	2	Chassis Enable Valve	DIGITAL	OUTPUT
	3	Platform Dump Valve	DIGITAL	OUTPUT
	4	Tower Telescope In Valve	DIGITAL	OUTPUT
	5	Basket Level Up Override	DIGITAL	OUTPUT
	6	Tele Valves Ground	GROUND	INPUT
	7	Basket Level Down Override	DIGITAL	OUTPUT
	8	Tower Telescope Flow Control Valve	DIGITAL	OUTPUT
	9	Main Lift Enable Aux Valve	DIGITAL	OUTPUT
	10	Main Lift Pilot Valve	DIGITAL	OUTPUT
	11	Tower Telescope Pilot Valve	DIGITAL	OUTPUT
	12	Warm Up Valve	DIGITAL	OUTPUT
	13	Main Dump Valve	DIGITAL	OUTPUT
	14	Lift Pilot/Main Dump Valves Ground	GROUND	INPUT
	15	Swing Left Valve	DIGITAL	OUTPUT
	16	Tower Tele Out Valve	DIGITAL	OUTPUT
J2	17	Chassis Enable Ground	GROUND	
(Gray)	18	Swing Valves Ground	GROUND	
	19 20	Main Telescope Flow Control Override Tower Lift Flow Control Valve	DIGITAL	OUTPUT OUTPUT
	20	Tower Lift Flow Control valve	DIGITAL	OUTPUT
	21	SPARE	DIGITAL	OUTPUT
	22	Tower Lift Up Valve	DIGITAL	OUTPUT
	24	Hydraulic Oil Temp Switch	DIGITAL	INPUT
	25	Fuel Sensor	ANALOG	INPUT
	26	Head/Tail Light	DIGITAL	OUTPUT
	27	Alarm	DIGITAL	OUTPUT
	28	Alarm/ Fuel Sensor Ground	GROUND	INPUT
	29	Main Lift Flow Control Ground	GROUND	INPUT
	30	Lift Valves Ground	GROUND	INPUT
	31	SPARE	DIGITAL	OUTPUT
	32	Swing Right Valve	DIGITAL	OUTPUT
	33	Tower Lift Pilot	DIGITAL	OUTPUT
	34	Main Lift Flow Control Valve	DIGITAL	OUTPUT
	35	Swing Flow Control Valve	DIGITAL	OUTPUT

Figure 6-31. UGM Module - Sheet 2 of 6

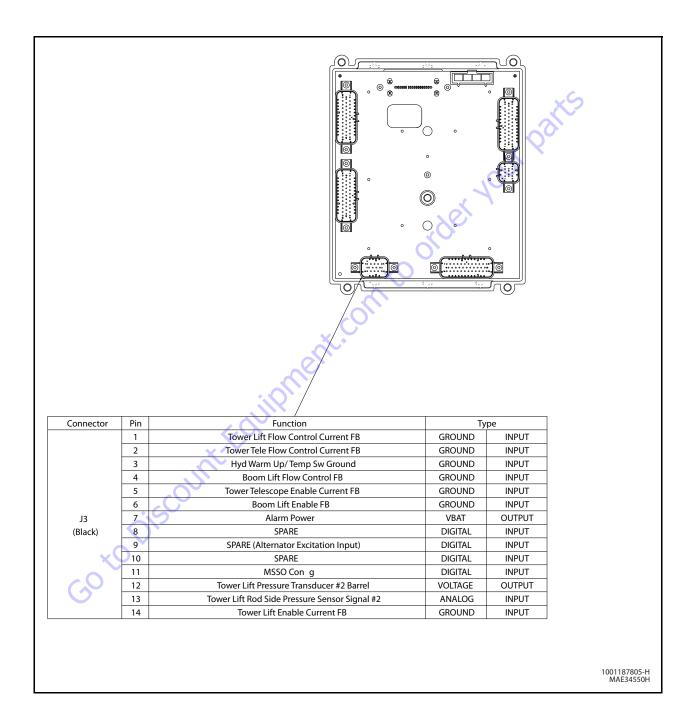


Figure 6-32. UGM Module - Sheet 3 of 6

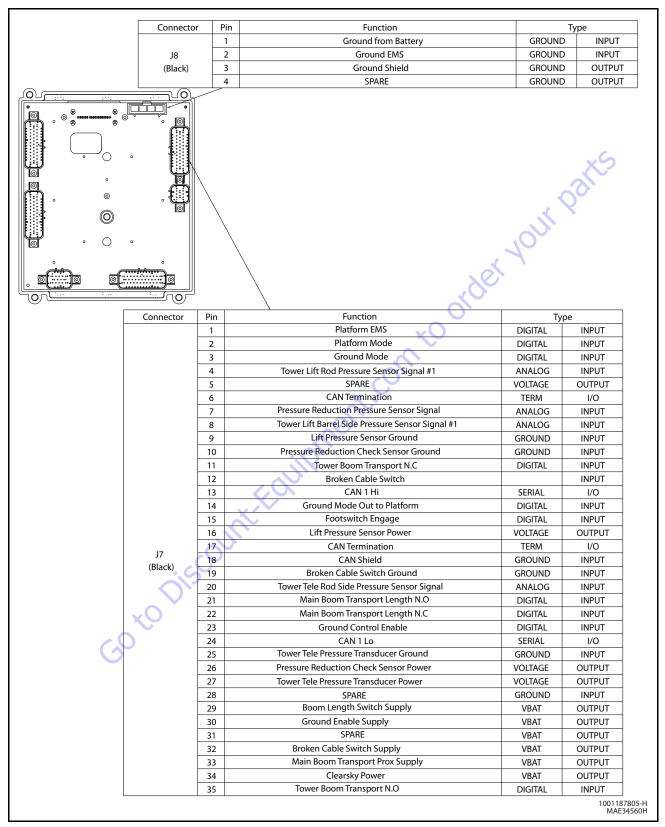


Figure 6-33. UGM Module - Sheet 4 of 6

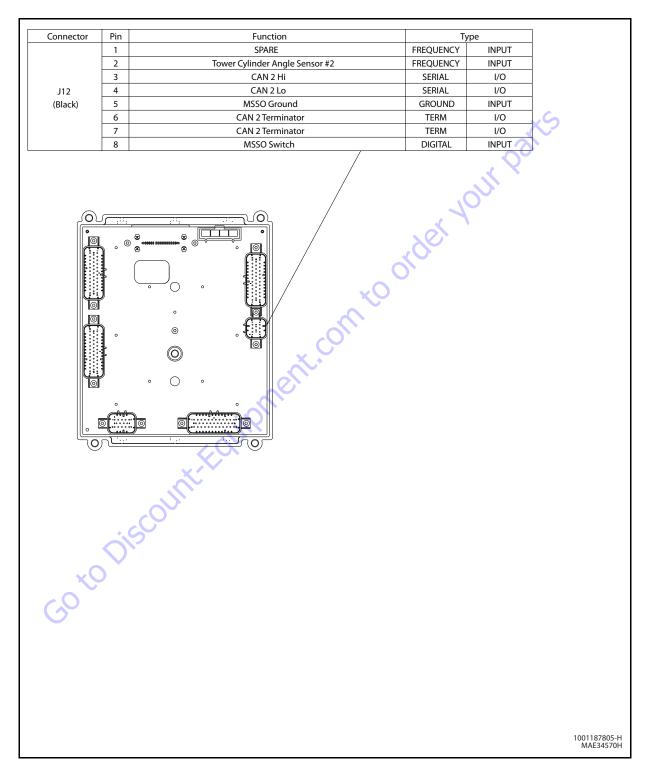


Figure 6-34. UGM Module - Sheet 5 of 6

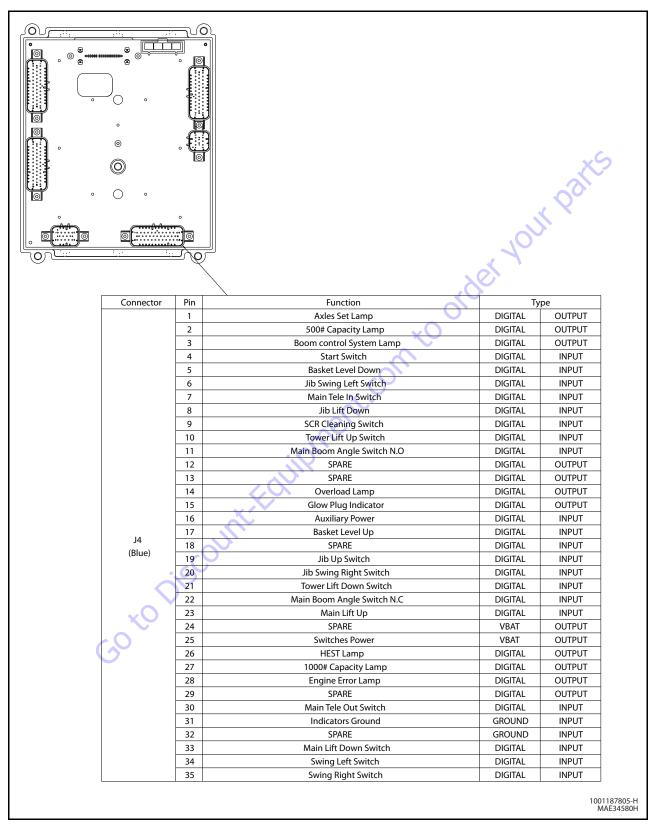


Figure 6-35. UGM Module - Sheet 6 of 6

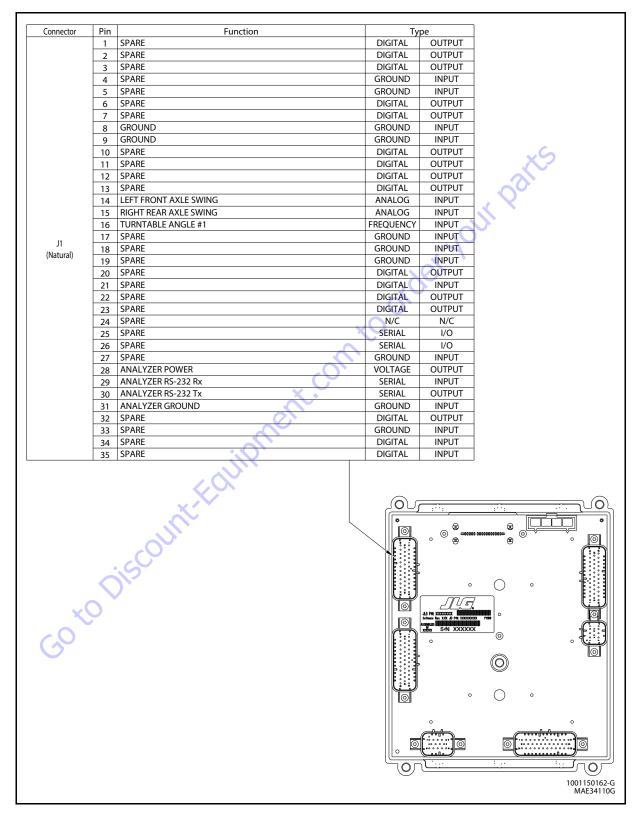


Figure 6-36. Chassis Module - Sheet 1 of 4

Connector	Pin	Function	,	pe	
	1	TWO SPEED	DIGITAL	OUTPUT	
	2	SPARE	DIGITAL	OUTPUT	
	3	SPARE	DIGITAL	OUTPUT	
	4	FRONT AXLE SWING EXTEND	DIGITAL	OUTPUT	
	5	REAR AXLE SWING EXTEND	DIGITAL	OUTPUT	
	6	GROUND	GROUND	INPUT	
	7	REAR AXLE SWING RETRACT	DIGITAL	OUTPUT	
	8	RIGHT REAR STEER RIGHT	DIGITAL	OUTPUT	
	9	LEFT REAR STEER RIGHT	DIGITAL	OUTPUT	Your parts
	10	SPARE	DIGITAL	OUTPUT	6
	11	RIGHT FRONT STEER RIGHT	DIGITAL	OUTPUT	XS
	12	SPARE	DIGITAL	OUTPUT	
	13	BRAKE	DIGITAL	OUTPUT	
	14	GROUND	GROUND	INPUT	\sim
	15	SPARE	DIGITAL	OUTPUT	4 ×
	16	FRONT AXLE SWING RETRACT	DIGITAL	OUTPUT	
	17	GROUND	GROUND	INPUT	
J2		GROUND	GROUND	INPUT	
(Gray)	18	RIGHT REAR STEER LEFT		OUTPUT	7
	19		DIGITAL		
	20	LEFT REAR STEER LEFT	DIGITAL	OUTPUT	•
	21		DIGITAL	OUTPUT	
	22	RIGHT FRONT STEER LEFT	DIGITAL	OUTPUT	
	23	SPARE	DIGITAL	OUTPUT	
		SPARE	DIGITAL	INPUT	
	25	FRONT RIGHT AXLE SWING	ANALOG	INPUT	
	26	SPARE	DIGITAL	OUTPUT	
	27	SPARE	DIGITAL	OUTPUT	
	28	GROUND	GROUND	INPUT	
	29	SPARE	GROUND	INPUT	
	30	GROUND	GROUND	INPUT	
	31	SPARE	DIGITAL	OUTPUT	
	32	SPARE	DIGITAL	OUTPUT	
	33	SPARE	DIGITAL	OUTPUT	
	34	LEFT FRONT STEER LEFT	DIGITAL	OUTPUT	
	35	LEFT FRONT STEER RIGHT	DIGITAL	OUTPUT	
(-30	LEFT FRONT STEER LEFT LEFT FRONT STEER RIGHT			
					о С С С С С С С С С С С С С

Figure 6-37. Chassis Module - Sheet 2 of 4

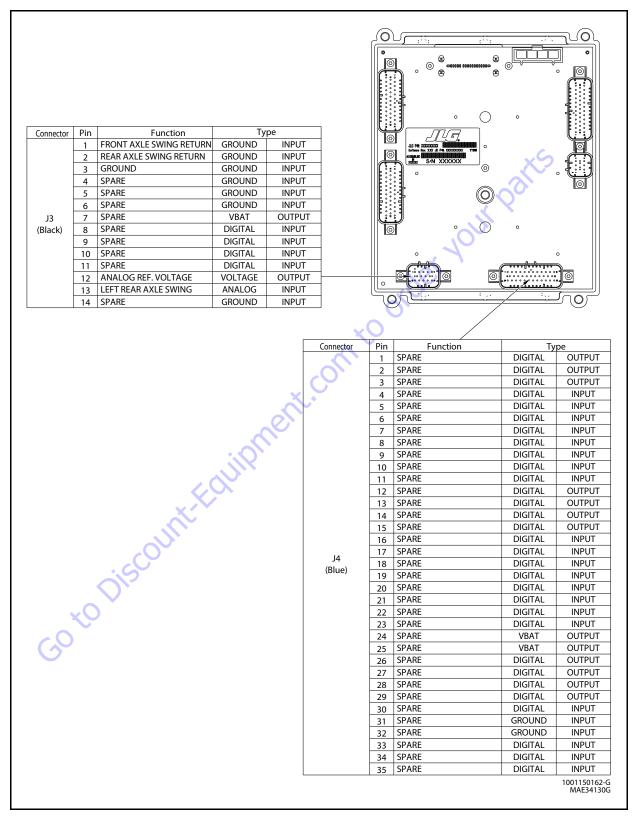


Figure 6-38. Chassis Module - Sheet 3 of 4

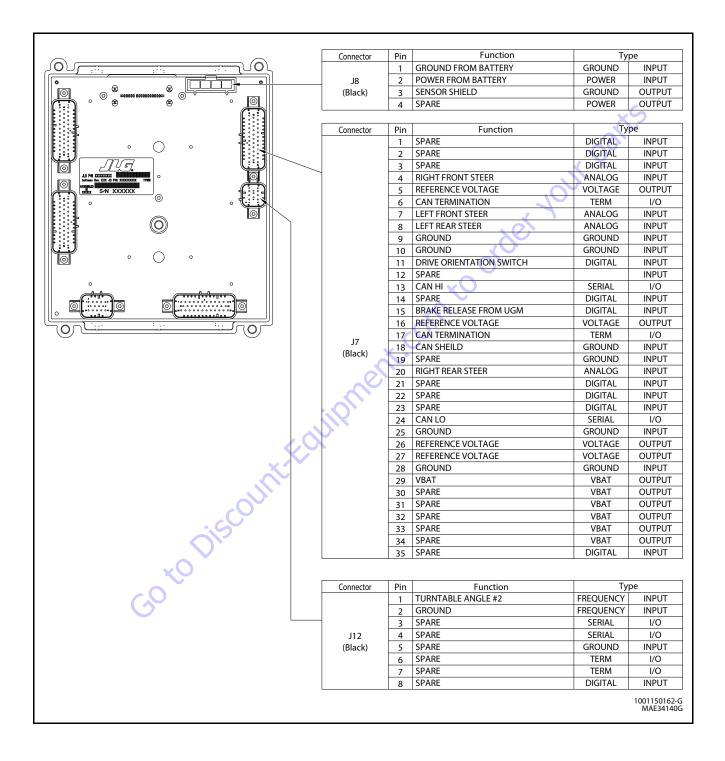


Figure 6-39. Chassis Module - Sheet 4 of 4

6.5 MACHINE CONFIGURATION PROGRAMMING INFORMATION

first and the ues.	n changing th	In must be completed before any personality settings can be changed. Changing the persona The model number of the machine configuration will cause the personality settings to return to	
- The items r	marked in BOL	D text on this sheet represent a new board that has never been configured.	
MODEL NUMBER: 1	0	No Model	-
	1	1500AJP	1
MARKET: 2	0	ANSIUSA	0
	1	ANSIEXPORT	
	2	CSA XO	
	3	Œ	-
	4	AUSTRALIA	-
	5	JAPAN	
ENGINE: 3	0	DEUTZ ECM T4i: Engine Control Module (Tier 4 Interim, LRC)	1
	1	DEUTZ ECM T4F: Engine Control Module (Tier 4 Final, HRC)	
			<u>.</u>
FUEL CUTOUT: 4	0	RESTART: Engine allowed to be restarted multiple times when very low fuel level is reached.	0
	1	ONE RESTART: Engine allowed to be restarted once for 2 minutes when very low fuel level is reached.	-
	2	ENGINE STOP: Engine not able to restart when very low fuel level is reached.	
GO	, OIS		

Table 6-2. Machine Configuration Programming Information - Version P1.6

Configuration Label/ Digit	Number	Description	Default Number
CHASSISTILT: 5	1	5 DEGREES + DRV CUT: Reduces the maximum speed of all boom functions to creep when tilted more than 5 degrees and above elevation; also cuts out drive.	1
	2	4 DEGREES + DRV CUT: Reduces the maximum speed of all boom functions to creep when tilted more than 4 degrees and above elevation; also cuts out drive.	
	3	3 DEGREES + DRV CUT: Reduces the maximum speed of all boom functions to creep when tilted more than 3 degrees and above elevation; also cuts out drive.	2
	4	4 DEGREES + CUT: Reduces the maximum speed of all boom functions to creep when tilted more than 4 degrees and above elevation; also disallows tower lift up, tower telescope out, drive, main telescope out and main lift up.	
	5	3 DEGREES + CUT: Reduces the maximum speed of all boom functions to creep when tilted more than 3 degrees and above elevation; also disallows tower lift up, tower telescope out, drive, main telescope out and main lift up.	
	6	5 DEGREES + CUT: Reduces the maximum speed of all boom functions to creep when tilted more than 5 degrees and above elevation; also disallows tower lift up, tower telescope out, drive, main telescope out and main lift up.	
	1		
SKYGUARD: 6	0	NO: Skyguard is not installed.	1
	1	YES: Skyguard is installed.	
SOFT TOUCH: 7			_
5011100011.7	0	NO: Soft Touch is not installed.	0
	1	YES: Soft Touch is installed.	
GEN SET/WELDER:8			
GEN SEI/WELDEK:8	0	NO: No generator installed.	0
	1	BELT DRIVE: Belt driven setup.	
	1		
GEN SET CUTOUT: 9*	0	MOTION ENABLED: Motion enabled when generator is ON.	0
	1	MOTION CUTOUT: Motion cutout in platform mode only.	
*Only visible if Gen Set / Wel	der Menu selecti	onisnot0.	
H&TLIGHTS: 10	0	NO: No head and tail lights installed.	0
		YES: Head and tail lights installed.	
LOAD SYSTEM: 11*	0	NO: No load sensor installed.	0
	1	CUTOUT PLATFORM: All functions cutout, overload lamp lit, platform alarm beeps (5 sec ON, 2 sec OFF).	
	2	CUTOUT ALL: All functions cutout, flash overload light (500mS on, 500mS off), platform alarm beeps (5 sec ON, 2 sec OFF).	
*Only visible under certain n	narket selections		
*Certain market selections w	/ill limit load svs	tem options or alter default setting.	

Table 6-2. Machine Configuration Programming Information - Version P1.6

Configuration Label/ Digit	Number	Description	Default Number
FUNCTION CUTOUT: 12*	0	NO: No drive cutout.	0
	1	BOOM CUTOUT: Boom function cutout while driving above elevation.	
	2	DRIVE CUTOUT: Drive cutout above elevation.	
*Only visible under certain m	arketselections	x.	
*Certain market selections w	ill limit functior	n cutout options or alter default setting.	
		×S	
GROUND ALARM: 13*	0	NO: No ground alarm installed.	3
	1	DRIVE: Travel alarm sounds when the drive function is active (Option).	
	2	DESCENT: Descent alarm sounds when lift down is active (Option).	
	3	MOTION: Motion alarm sounds when any function is active (Option).	
			I
DISPLAY UNITS: 14*	0	METRIC: units selection. (Deg. C, KPA, Kg.)	1
	1	IMPERIAL units selection. (Deg. F, PSI, Lbs.)	
*Certain market selections w	ill alter default s	setting.	
		Ox	
CLEARSKY: 15	0	NO: ClearSky Telematics system not installed.	0
	1	YES: ClearSky Telematics system installed.	
ALERT BEACON: 16	0	OFF FOR CREEP	0
	1	20FPS FOR CREEP	
TEMP CUTOUT: 17*	0	NO: No temperature cutout	0
	1	YES: Temperature cutout enabled	
*Certain market selections w	ill alter defaults		
		· · · · · · · · · · · · · · · · · · ·	
PLAT LVL OVR CUT: 18	0	NO: Platform Level Manual Override Cutout disabled	0
	10	YES: Platform Level Manual Override Cutout enabled	
	N'		
WATER IN FUEL SENSOR: 19*	0	NO: Water In Fuel shutdown disabled	0
×	1	YES: Water In Fuel shutdown enabled	`
*Only visible under certain m			
		cutout options or alter default setting.	
CRIBBING: 20*	0	NO: Cribbing disabled	0
	1	YES: Cribbing enabled	
	arketselections		1

Table 6-2. Machine Configuration Programming Information - Version P1.6

Configuration Label/ Digit	Number	Description	Default Number
DISPLAY LANGUAGE: 21	0	ENGLISH	0
	1	SPANISH	
	2	EUROPORTUGUESE	
	3	BRAZILIAN PORTUGUESE	
	4	FRENCH	
	5	GERMAN	>
	6	DUTCH	
	7	ITALIAN	
	8	SIMPLIFIED CHINESE	
	9	JAPANESE	
	10	KOREAN	
	50 50	KOREAN	

31215061

1500AJP	ANSI USA	ANSI Export	CSA	CE	Australia	Japan
Model Number	1	1	1	1	1	1
Market	0	1	2	3	4	5
Engine	0	0	0	0	0	0
	1	1	1	1	1	1
Fuel Cutout	0	0	0	0	0	0
	1	1	1	1	1	1
	2	2	2	2	2	2
Chassis Tilt	1	1	1	1	1	1
	2	2	2	2	2	2
	3	3	3	3	3	3
	4	4	4	4	4	4
	5	5	5	5	5	5
	6	6	6	6	6	6
Skyguard	0	0	0	0	0	0
	1	1	1	1	1	1
SoftTouch	0	0	0	0	0	0
	1	1	1	1	1	1
Gen Set/Welder	0	0	0	0	0	0
	1	1	1	1	1	1
Gen Set Cutout	0	0	0	0	0	
	1	1	1	1	1	1
Head & Tail lights	0	0	0	0	0	0
	1	1	1	1	7	1
Load System	0	0	0	0	0	0
	1	1	1 X	X	1	1
	2	2	2	2	Х	2
Function Cutout	0	0	0	Х	0	0
	1	10	1	1	1	1
	2	2	2	Х	2	2
Ground Alarm	0	0	0	0	0	0
	XO	1	1	1	1	1
	2	2	2	2	2	2
6	3	3	3	3	3	3
Display Units	0	0	0	0	0	0
	1	1	1	1	1	1
Clearsky	0	0	0	0	0	0
-	1	1	1	1	1	1
Alert Beacon	0	0	0	0	0	0
	1	1	1	1	1	1

⁶ Table 6-3. Machine Configuration programming Settings -Version P1.6

Table 6-3. Machine Configuration programming Settings -Version P1.6

1500AJP	ANSI USA	ANSI Export	CSA	CE	Australia	Japan
Temp Cutout	Х	0	Х	0	Х	Х
	Х	1	Х	1	Х	Х
Plat Lvl Ovr Cut	0	0	0	0	0	0
	1	1	1	1	1	1
Water In Fuel	Х	0	X 🗙	X	Х	Х
	Х	1	X	Х	Х	Х
Cribbing	0	X	X	Х	Х	Х
	1	X	Х	Х	Х	Х
Language	0	0	0	0	0	0
	1	1	1	1	1	1
	2	2	2	2	2	2
A A	3	3	3	3	3	3
	4	4	4	4	4	4
	5	5	5	5	5	5
×O	6	6	6	6	6	6
\sim	7	7	7	7	7	7
	8	8	8	8	8	8
r	9	9	9	9	9	9
	10	10	10	10	10	10
BOLD TEXT indicates the tion.	he default s	etting. Plai	in text indi	cates anot	her availab	le selec-
					1001	1220472-C

31215061

6.6 MACHINE PERSONALITY SETTINGS AND SPEEDS

Submenu (Displayed on Analyzer 1st Line)	Parameter (Displayed on Analyzer 2nd Line)	Displayed on Description nalyzer 2nd		Default Value	Times (Seconds)
DRIVE:					
DRIVE:	ACCEL X.Xs	Displays/adjusts drive acceleration	0.1 to 3.0 sec	2	xS
	DECEL X.Xs	Displays/adjusts drive deceleration	0.1 to 2.0 sec	1	
	FWD MIN XX%	Displays/adjusts minimum forward drive speed	1 to 20%	1	0
	FWD MAX XXX%	Displays/adjusts maximum for ward drive speed	50 to 100%	100	47-50 (see orientation)
	REV MIN XX%	Displays/adjusts minimum reverse drive speed	1 to 20%	1	~
	REV MAX XX%	Displays/adjusts maximum reverse drive speed	50 to 100%	100	
	ELEV. MAX XX%	Displays/adjusts maximum drive speed NOTE: used when elevation cutout switches are limiting maximum speed	15 to 28%	18	170-188 (see orientation)
	CREEP SCALE XX%	Displays/adjusts maximum drive speed NOTE: used when creep switch on pump pot is active	15 to 28%	180	79-87 (see orientation)
BOOM LIFT:			4		
BOOM LIFT:	ACCEL X.Xs	Displays/adjusts main lift acceleration	0.1 to 3.0 sec	1.0	
	DECEL X.Xs	Displays/adjusts main lift deceleration	0.1 to 2.0 sec	0.5	
BOOM LIFT UP	CREEP SCALE XX%	Displays/adjusts maximum main lift up speed NOTE: used when creep switch on pump pot is active	0 to 50%	35	
BOOM LIFT DOWN	CREEP SCALE XX%	Displays/adjusts maximum main lift down speed NOTE: used when creep switch on pump pot is active	0 to 50%	40	
		Desired MAIN BOOM LIFT UP time			70-90 (see orientation)
		Desired MAIN BOOM LIFT DOWN time			70-90 (see orientation)
		Desired QUICKSTICK UP time			165-195 (see orientation)
		Desired QUICKSTICK DOWN time			165-195(see orientation)
TT SWING:		-0-			
SWING:	ACCEL X.Xs	Displays/adjusts swing acceleration	0.1 to 3.0 sec	2	
	DECELX.Xs	Displays/adjusts swing deceleration	0.1 to 2.0 sec	1.5	
	LEFT MIN XX%	Displays/adjusts minimum swing left speed	1 to 50%	25	
	LEFT MAX XXX%	Displays/adjusts maximum swing left speed	40 to 80%	60	105-125 (see orientation)
SWING LEFT	CREEP SCALE XX%	Displays/adjusts maximum swing left speed NOTE: used when creep switch on pump pot is active	0 to 50%	25	
SWING	RIGHT MINXX%	Displays/adjusts minimum swing right speed	1 to 50%	25	
	RIGHT MAX XXX%	Displays/adjusts maximum swing right speed	40 to 80%	60	105-125 (see orientation)
SWING RIGHT	CREEP SCALE XX%	Displays/adjusts maximum swing right speed NOTE: used when creep switch on pump pot is active	0 to 50%	25	
rower lift:		·			
TOWERLIFT	ACCEL X.Xs	Displays/adjusts main lift acceleration	0.1 to 3.0 sec	1	
	DECELX.Xs	Displays/adjusts main lift deceleration	0.1 to 2.0 sec	0.5	
		Desired TOWER BOOM LIFT UP time			130-150 (see orientation)
		Desired TOWER BOOM LIFT DOWN time			145-165 (see orientation)

Table 6-4. Machine Personality Settings and Speeds

Submenu (Displayed on Analyzer 1st Line)	Parameter (Displayed on Analyzer 2nd Line)	Description	Range	Default Value	Times (Seconds)
BOOMTELE:		· · · · · · · · · · · · · · · · · · ·			
BOOMTELE	ACCELX.Xs	Displays/adjusts main telescope acceleration	0.1 to 3.0 sec	1.5	
	DECEL X.Xs	Displays/adjusts main telescope deceleration	0.1 to 2.0 sec	0.5	
	CREEP SCALE XX%	Displays/adjusts maximum boom tele speed NOTE: used when creep switch on pump pot is active	0 to 50%	20	xS
		Desired MAIN BOOM TELE IN time			63-83 (see orientation)
		Desired MAIN BOOM TELE OUT time			58-78 (see orientation)
PLATFORM LEVEL	:			1.	•
PLATFORM	ACCEL X.Xs	Displays/adjusts basket level acceleration	0.1 to 3.0 sec	1.5	
LEVEL	DECEL X.Xs	Displays/adjusts basket level deceleration	0.1 to 2.0 sec	0.5	
	UP MIN XX%	Displays/adjusts minimum basket level up speed. Same as Creep speed	5 to 50%	40	
	UP MAX XXX%	Displays/adjusts maximum basket level up speed	40 to 80%	70	
	DOWN MIN XX%	Displays/adjusts minimum basket level down speed. Same as Creep speed	5 to 50%	35	
	DOWN MAX XXX%	Displays/adjusts maximum basket level down speed	40 to 80%	65	
	CREEP SCALE XX%	Displays/adjusts maximum platform level speed NOTE: used when creep switch on pump pot is active	0 to 50%	25	
PLATFORM ROTAT	E:			1	
PLATFORM	ACCEL X.Xs	Displays/adjusts basket rotate acceleration	0.1 to 3.0 sec	1	
ROTATE	DECEL X.Xs	Displays/adjusts basket rotate deceleration	0.1 to 2.0 sec	0.5	
	LEFT MIN XX%	Displays/adjusts minimum basket rotate left speed. Same as Creep speed	5 to 50%	25	
	LEFT MAX XXX%	Displays/adjusts maximum basket rotate left speed	30 to 60%	36	24-32(180°)
	RIGHT MIN XX%	Displays/adjusts minimum basket rotate right speed. Same as Creep speed	5 to 50%	30	
	RIGHT MAX XXX%	Displays/adjusts maximum basket rotate right speed	30 to 60%	45	24-32(180°)
	CREEP SCALE XX%	Displays/adjusts maximum boom tele speed NOTE: used when creep switch on pump pot is active	50 to 100%	90	
JIBLIFT:				·	·
JIBLIFT	ACCELX.Xs	Displays/adjusts jib lift acceleration	0.1 to 3.0 sec	1.5	
(DECEL X.Xs	Displays/adjusts jib lift deceleration	0.1 to 2.0 sec	1	
	UP MIN XX%	Displays/adjusts minimum jib up speed. Same as Creep speed	5 to 50%	35	
	UP MAX XXX%	Displays/adjusts maximum jib up speed	40 to 80%	65	30-36 (see orientation)
	DOWN MIN XX%	Displays/adjusts minimum jib down speed. Same as Creep speed	5 to 50%	35	
	DOWN MAX XXX%	Displays/adjusts maximum jib down speed	40 to 80%	61	30-36 (see orientation)
	CREEP SCALE XX%	Displays/adjusts maximum jib lift up/down speed NOTE: used when creep switch on pump pot is active	0 to 50%	25	

Table 6-4. Machine Personality Settings and Speeds

Submenu (Displayed on Analyzer 1st Line)	Parameter (Displayed on Analyzer 2nd Line)	Description	Range	Default Value	Times (Seconds)
JIB SWING:		1	N		
JIB SWING	ACCEL X.Xs	Displays/adjusts jib swing acceleration	0.1 to 3.0 sec	1.5	
	DECEL X.Xs	Displays/adjusts jib swing deceleration	0.1 to 2.0 sec	0.5	
	LEFT MIN XX%	Displays/adjusts minimum jib left speed. Same as Creep speed	5 to 50%	35	XS
	LEFT MAX XXX%	Displays/adjusts maximum jib left speed	30 to 60%	48	42-48 (125°)
	RIGHT MIN XX%	Displays/adjusts minimum jib right speed. Same as Creep speed	5 to 50%	30	N P
	RIGHT MAX XXX%	Displays/adjusts maximum jib right speed	30 to 60%	39	42-48(125°)
	CREEP SCALE XX%	Displays/adjusts maximum jib swing speed NOTE: used when creep switch on pump pot is active	30 to 100%	65	
GROUND MODE:					
GROUND	SWING SCALE XXX%	Displays/adjusts fixed swing speed	30 to 100%	40	
GROUND BOOM	LIFT UP SCALE XXX%	Displays/adjusts fixed main lift up speed	50 to 100%	70	
	LIFT DN SCALE XXX%	Displays/adjusts main lift down speed	50 to 100%	70	
	MAIN TELE XXX%	Displays/adjusts fixed main telescope speed	50 to 100%	70	
GROUND JIB	LIFT SCALEXXX%	Displays/adjusts jib lift speed Not displayed if JIB = 0	50 to 100%	80	
	SWING SCALE XXX%	Displays/adjusts jib swing speed Displayed if JIB = 2	50 to 100%	80	
GROUND	LEVEL SCALE XXX%	Displays/adjusts fixed basket level speed	50 to 100%	80	
PLATFORM	SWING SCALE XXX%	Displays/adjusts fixed basket rotate speed	50 to 100%	80	
ENGINE RPM:					
ENGINE RPM	GEN SETXXXX RPM	Control generator/welder RPM. Not displayed if GEN SET/WELDER = 0	900-2500	1800	1800 for 60Hz , 1900 for 50Hz
ALARM/HORN:	•	∇			
ALARM/HORN:	HORN VOLUME	Displays/adjusts horn volume.	25-100	100	
	ALARM VOLUME	Displays/adjusts audible alarm volume.	25-100	100	
TEMPERATURE (visible if MACHINE	C UT: SETUP TEMP CUTOUT = YE	ES)			
LOW TEMPERA- TURE	CUTOUT SET: XXC	Displays/adjusts temperature for LOW TEMPERATURE CUTOUT.	-30-0C	-30	
PLATFORM LOAI	D: Setup load system ≠ ye	S)			
PLATFORM OVRLD:	XXXLBS	Displays/adjusts platform overload value for full enve- lope capacity.	100-600LBS	600	
	RESTRICT XXXXLBS	Displays/adjusts platform overload value for restricted envelope capacity.	100 - 1000LBS	1000	

Table 6-4. Machine Personality Settings and Speeds

6.7 MACHINE ORIENTATION WHEN SETTING PERSONALITY SPEEDS

Main Boom Lift Up

MAIN BOOM LIFT UP, from platform control, lowest elevation up to maximum elevation, main boom retracted, tower boom on rest. (AUTO/MANUAL)

Main Boom Lift Down

MAIN BOOM LIFT DOWN, from platform control, maximum elevation down to lowest elevation, main boom retracted, tower boom on rest. (AUTO/MANUAL)

Quick Stick Up

QUICK STICK UP, from platform control, lowest elevation up to maximum elevation, main boom fully extended, tower fully extended and at max angle, controlled arc function active.

Quick Stick Down

QUICK STICK DOWN, from platform control, maximum elevation down to lowest elevation, main boom fully extended, tower fully extended and at max angle, controlled arc function active.

Tower Boom Lift Up

TOWER BOOM LIFT UP, from platform control, lowest elevation up to maximum elevation, main boom retractd and horizontal.

Tower Boom Lift Down

TOWER BOOM LIFT DOWN, from platform control, maximum elevation down to lowest elevation, main boom retractd and horizontal.

Jib Lift Up

JIB LIFT UP, from platform control, lowest jib elevation up to maximum jib elevation, main boom retracted, tower boom retracted.

Jib Lift Down

JIB LIFT DOWN, from platform control, maximum jib elevation down to minimum jib elevation, main boom retracted, tower boom retracted.

Swing Right (Max)

SWING RIGHT(Max),360 Degrees, from platform control, main boom retracted, tower boom on boom rest.

Swing Left (Max)

SWING LEFT(Max), 360 Degrees, from platform control, main boom retracted, tower boom on boom rest.

Main Boom Telescope Out

MAIN BOOM TELESCOPE OUT, from platform control, main boom horizontal, tower boom on rest, 600 lb. capacity selected, jib swing centered.

Main Boom Telescope In

MAIN BOOM TELESCOPE IN, from platform control, main boom horizontal, tower boom on rest, 600 lb. capacity selected, jib swing centered.

Drive Forward (Max)

DRIVE FORWARD (Max), high speed - low torque setting, drive 200 ft. front wheels to front wheels. Timed after machine has obtained maximum speed.

Drive Reverse (Max)

DRIVE REVERSE (Max), high speed - low torque setting, drive 200 ft. front wheels to front wheels Timed after machine has obtained maximum speed.

Drive Creep Scale (Fwd/Rev), High Torque

DRIVE CREEP SCALE (Fwd/rev), high torque - low speed setting, platform speed knob at full CCW position

Drive Elev Max (Fwd/Rev - Boom Beyond Transport)

DRIVE ELEV MAX (Fwd/rev - Boom Beyond Transport), high speed - low torque setting, platform speed knob out of creep, raise boom above transport, drive 50 ft. Check FWD and REV. Time for faster direction must fall within target range. Slower direction may exceed target range.

6.8 MACHINE SENSORS AND SWITCHES

The JLG Control System uses multiple sensors and switches throughout the entire machine.

Refer to Figure 6-40., Sensor Locations

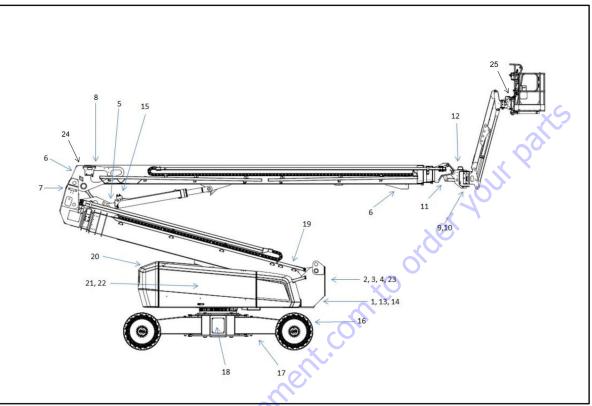


Figure 6-40. Sensor Locations

Sensor #1 - Tower Lift Cylinder Angle Sensor (1)

This sensor's function is to measure tower boom angle relative to the turntable. A rotary type sensor is mounted to the Turntable and attached to the Tower Lift cylinder. It is a dual output sensor in a single mechanical body with electrically opposing signals.

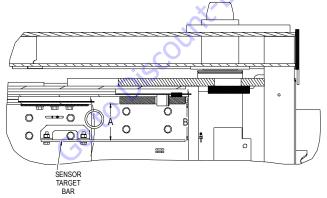
SENSOR INSTALLATION

- 1. Install the sensor onto the pin.
- 2. Rotate the sensor clockwise until it stops.
- **3.** Rotate the sensor counterclockwise to align the sensor holes with the holes in the sensor link.
- 4. Install the retaining screws.

Sensor #2 - Tower Angle Sensors (2)

These sensors measure Tower Boom angle with respect to gravity. They are located on the bottom pivot end of the tower boom section #1 and mounted such that they generate opposing signals with respect to boom movement.

Sensor #3 - Tower Length Sensors (2)


These sensors are used to measure total stroke of the tower boom. They are located in the pivot end of tower boom section #1 and consist of a wire rope attached to a rotating drum.

TOWER BOOM PROXIMITY SWITCH AND LENGTH SENSORS INSTALLATION.

- 1. Shim the Sensor Target Bar using the procedure in SEN-SOR TARGET SHIMMING below.
- **2.** Slide the sensor target stop against the sensor position plate before tightening the retaining bolt.
- 3. Adjust the proximity sensor so the sensor tip is recessed by 1 ± 0.5 mm from the track in the sensor target stop. Torque the jam nuts to 24 Nm.
- **4.** Attach the position sensor plate to the sensor bracket leaving the bolt loose enough for later adjustment.
- 5. Attach the boom length sensor to the sensor bracket.
- 6. Attach the sensor bracket.
- Adjust the sensor position plate on the sensor bracket so the tip of the sensor target bar is centered at the beginning of the sensor target stop. Tighten the retaining bolt. Tower boom extension is 240 mm.
- 8. Attach the carabiner from the boom length sensor to the ring on the fly boom. The boom can be retracted.

SENSOR TARGET SHIMMING

1. Shim the sensor target bar so the absolute value of dimension A minus B is less than 5 mm.

- **2.** Add washers as required to the retaining bolt between the sensor target bar and the fly boom to change the absolute value of dimension A minus B.
- 3. Only shim at one bolt. Do not shim at two places.

Sensor #4 - Tower Transport Length Switch (1)

This proximity switch is used to indicate tower boom retracted position for transport. It is located in the pivot end of tower boom section #1 and is mounted so that when the boom is in the transport position it senses the presence of a target (steel bar mounted to tower boom section #3). This switch senses no target when tower boom section #3 moves beyond approximately 159mm with respect to tower boom section #1 from the fully retracted position.

Sensor #5 - Main Boom Angle Sensor (2)

These sensors are rotary sensors mounted between the primary link and the main boom lift cylinder and are used to measure main boom angle with respect to the tower boom. These sensors are dual output sensors in a single mechanical body with electrically opposing signals (Only one channel of each sensor is used by the control system). They are mounted such that they generate opposing signals with respect to boom movement.

Sensor #6 - Main Length Sensors (2)

These sensors are used to measure total stroke of the Main Boom. They consist of a wire rope attached to a rotating drum. A sensor is located at each end of main boom section #1.

Sensor #7 - Main Boom Angle Switch (1)

This proximity switch is used by the Electrical Retrieval system in the event of a primary BCS system electrical failure. It is located inside of tower boom section #3 (fly nose) and senses a cam (target) on main boom section #1. This switch senses no target when the main boom angle is greater than approximately 24° relative to the Tower Boom.

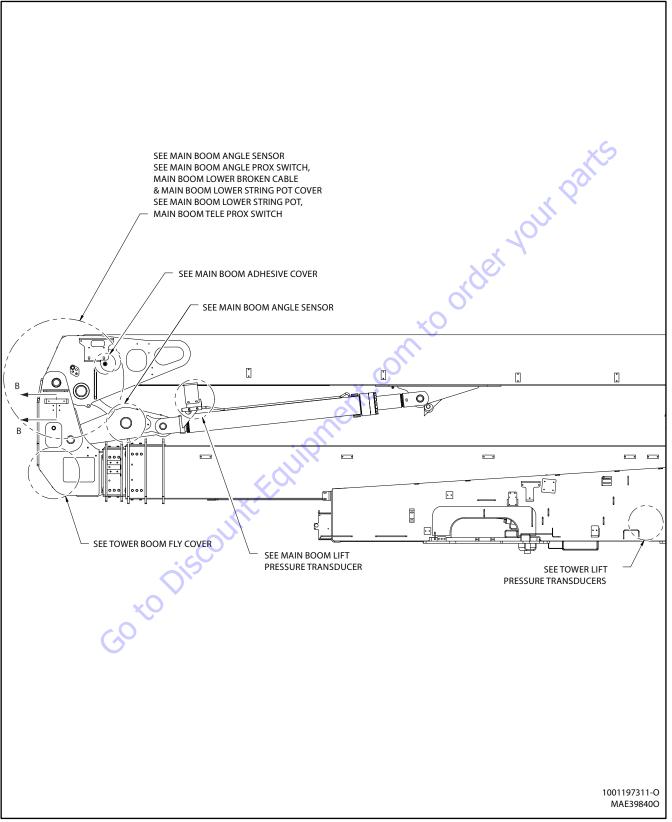


Figure 6-41. Boom Sensors Installation - Sheet 1 of 13

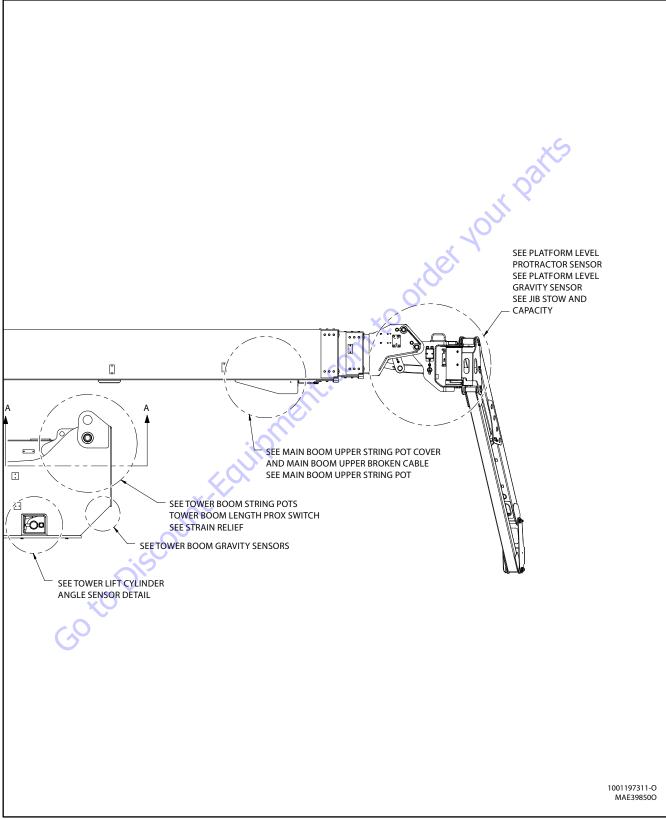


Figure 6-42. Boom Sensors Installation - Sheet 2 of 13

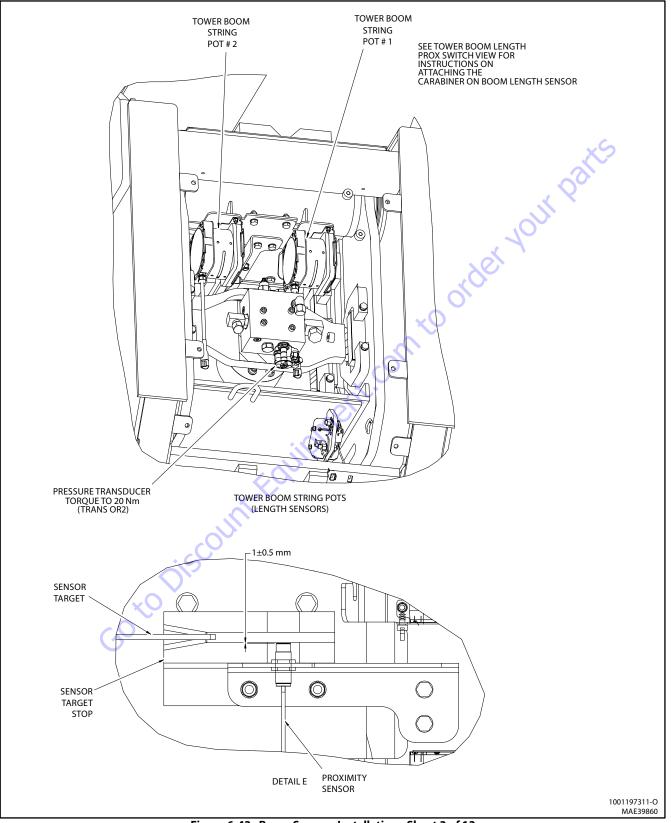


Figure 6-43. Boom Sensors Installation - Sheet 3 of 13

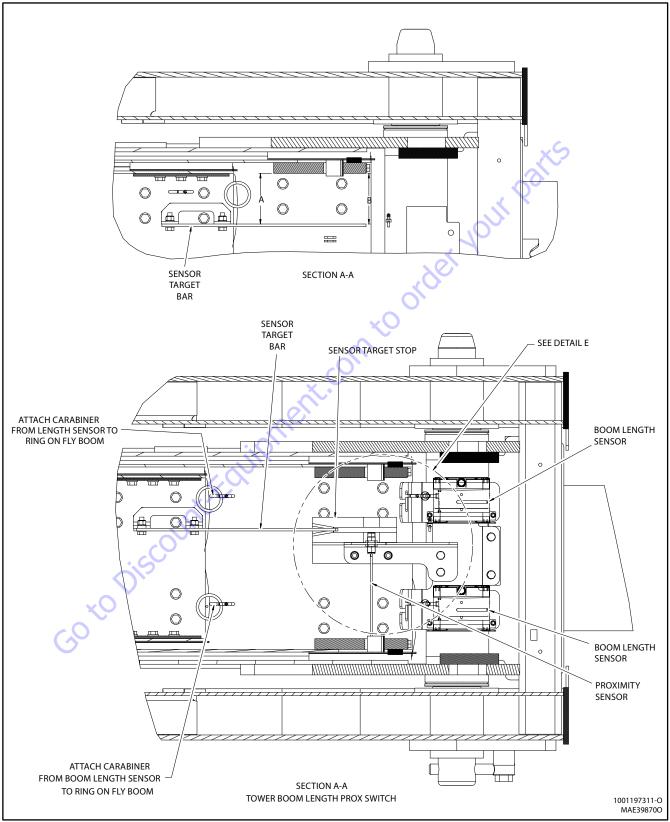
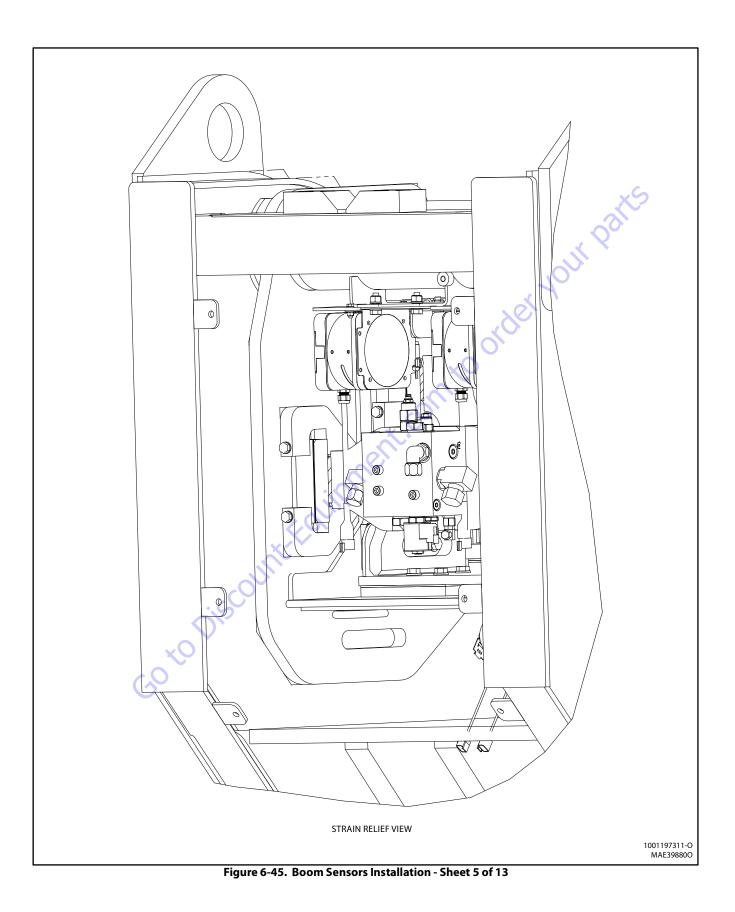



Figure 6-44. Boom Sensors Installation - Sheet 4 of 13

31215061

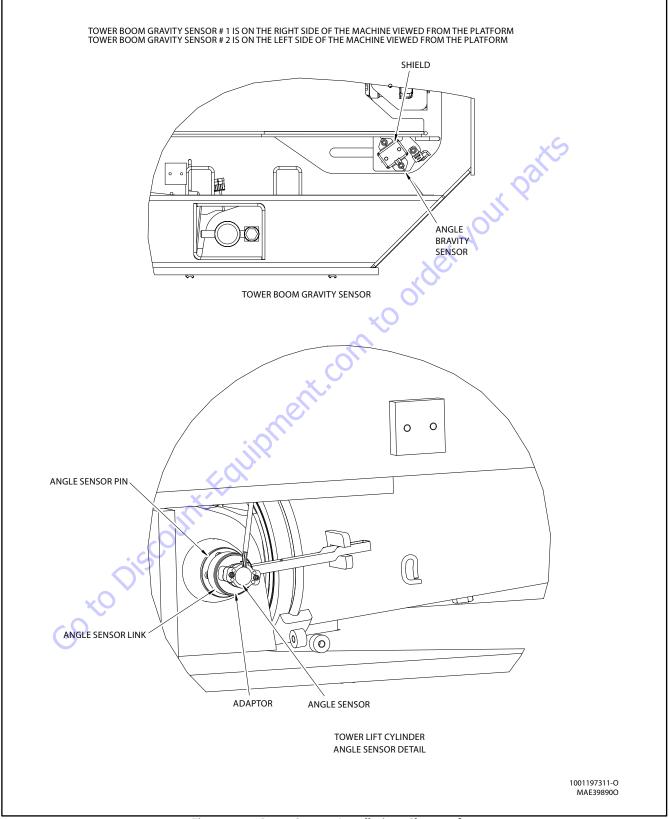


Figure 6-46. Boom Sensors Installation - Sheet 6 of 13

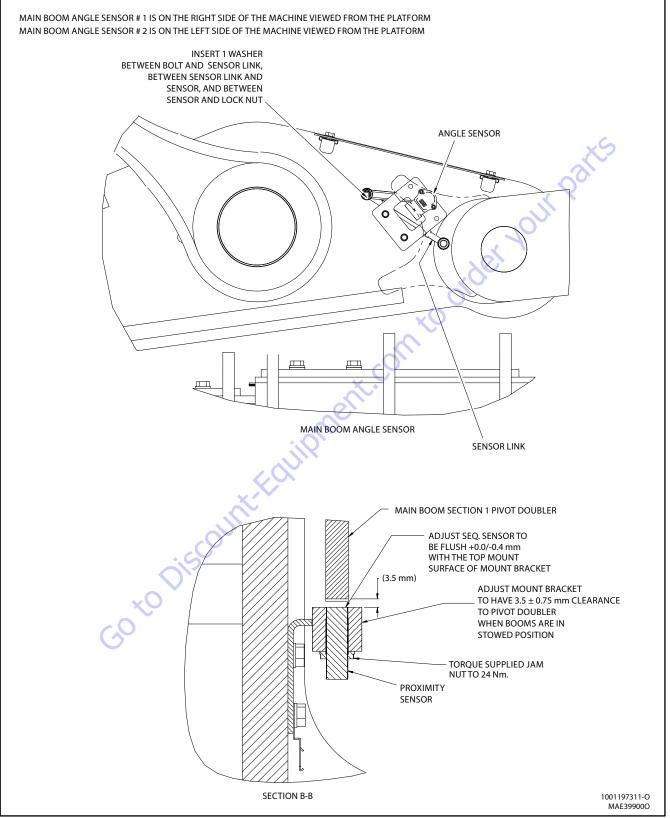


Figure 6-47. Boom Sensors Installation - Sheet 7 of 13

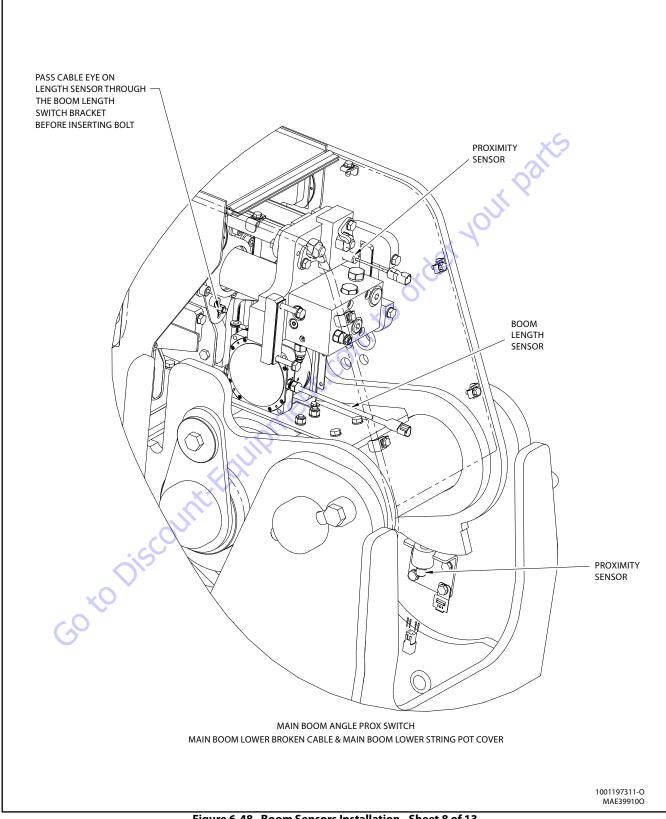


Figure 6-48. Boom Sensors Installation - Sheet 8 of 13

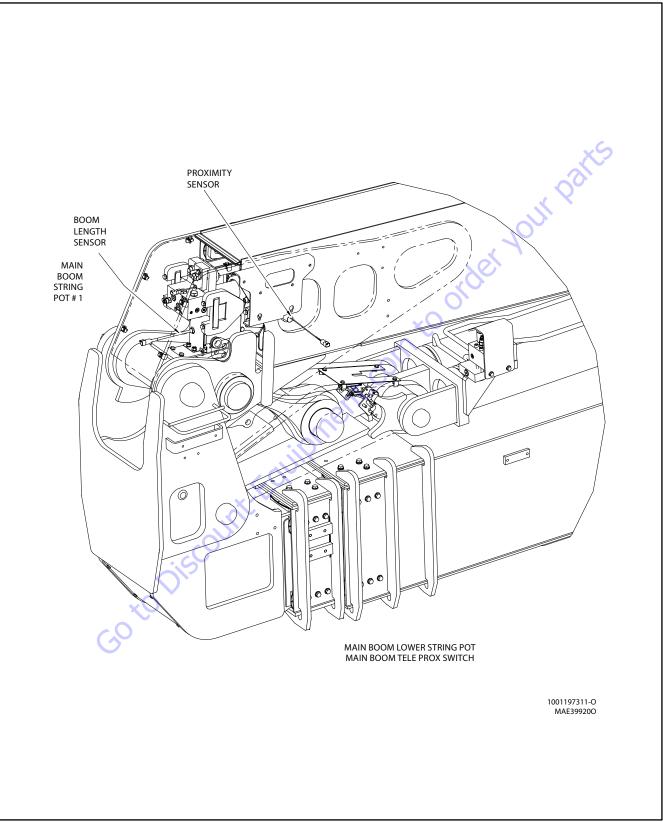


Figure 6-49. Boom Sensors Installation - Sheet 9 of 13

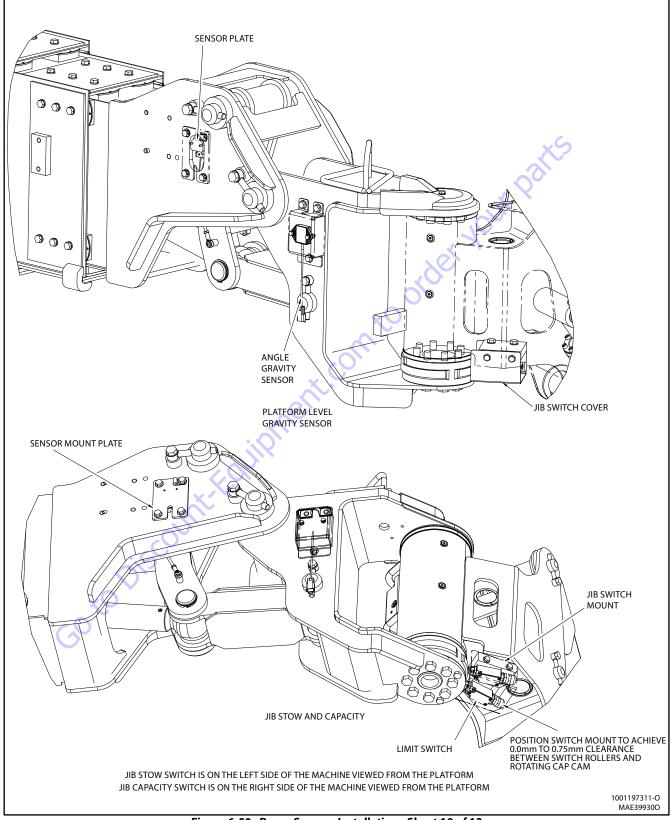
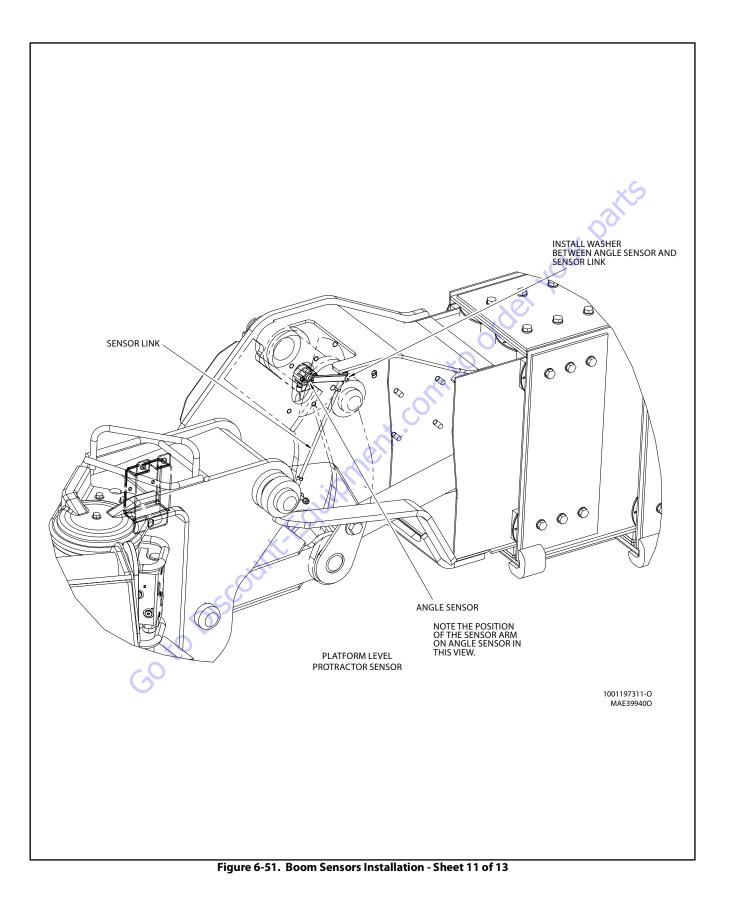



Figure 6-50. Boom Sensors Installation - Sheet 10 of 13

31215061

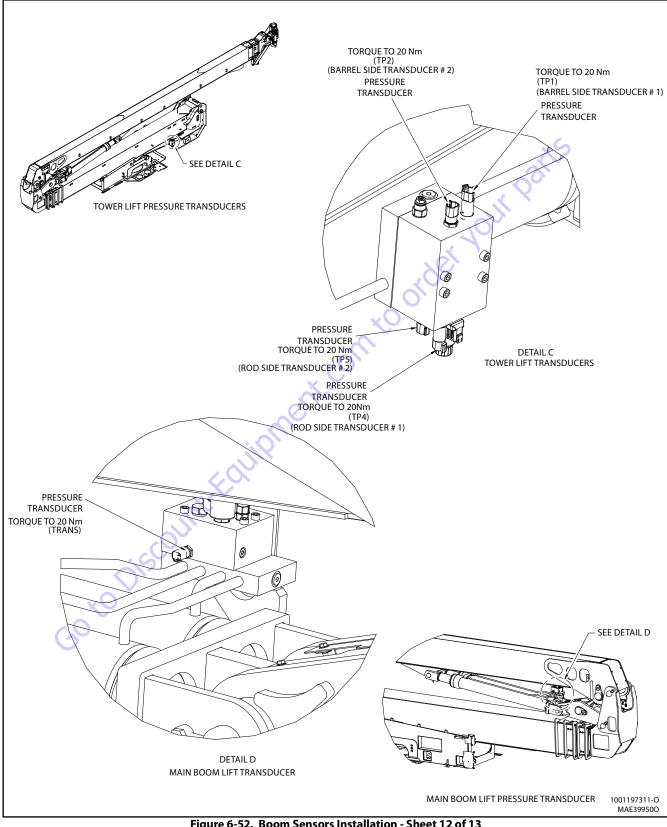


Figure 6-52. Boom Sensors Installation - Sheet 12 of 13

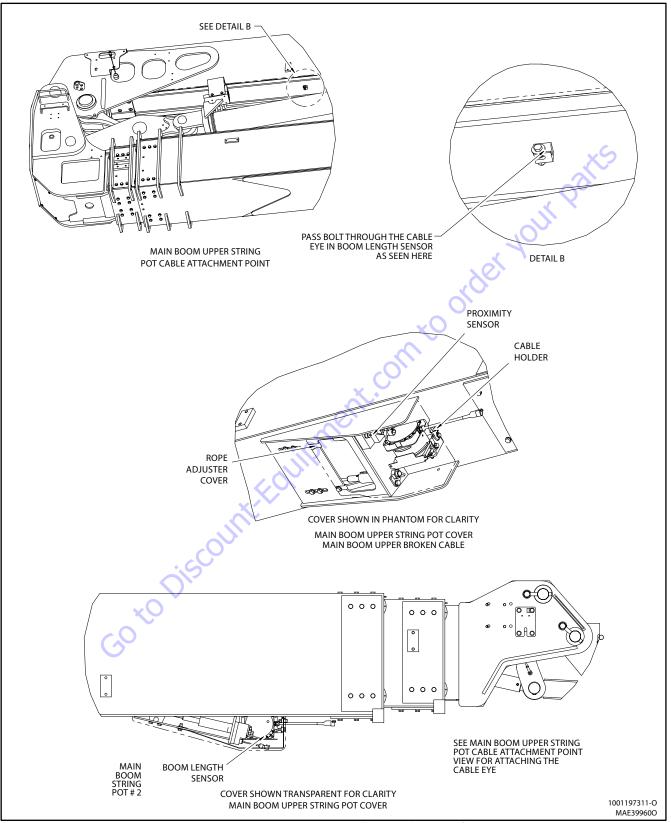


Figure 6-53. Boom Sensors Installation - Sheet 13 of 13

6.9 BOOM SENSOR POSITIONS/FUNCTIONS

Table 6-5. Boom Sensor Positions/Functions

Sensor Position/Function	Sensing Method	Raw Output
Tower Boom Angle Sensors (2) - These sensors measure Tower Boom angle with respect to gravity and generate elec- trically opposing signals	Gravity Based PWM Output (100Hz)	5 - 95% duty cycle
Tower Boom Length Sensors (2) - These sensors measure the length of the Tower Boom by measuring the stroke of the fly relative to the base booms. The intent is to mount these sensors with opposite signals.	5 kΩ Potentiometer Voltage Output	0.05 - 4.75 Volts
Tower Boom Cylinder Angle Sensor (2) - These sensors measure the Tower Boom angle relative to the Turntable. They are integrated into the same mechanical body with the dual output generating electrically opposing signals	5V protractor hall effect PWM Output (100Hz)	10 - 90% duty cycle
	IN Po	90 - 10% duty cycle
Tower Boom Transport Length Switch (2) - This proximity switch is used to indicate the Tower Boom retracted position. This switch mounted to the pivot end of the base boom detecting the presence of fly when in the retracted state.	Dual Output Proximity Switch	Normally Open
S_	Se,	Normally Closed
Main Boom Angle Sensors (2) - These sensors measure Main Boom angle with relative to the Tower Boom and generate electrically opposing signals.	5V protractor hall effect PWM Output (100Hz)	5 - 95% duty cycle
Main Boom Angle Switch (2) — This proximity switch will indicate the main boom angle below a TBD angle relative to	Proximity Switch	Normally Open
the Tower Boom	-	Normally Closed
Main Boom length sensors (2) - These sensors measure the length of the Main Boom by measuring the stroke of base relative to mid booms. The intent is to mount these sensors with opposite signals.	5 kΩ Potentiometer Voltage Output	0.05 - 4.75 Volts
Main Boom Transport Length Switch (2) - This proximity switch is used to indicate the Main Boom retracted position.	Proximity Switch	Normally Open
The trip length is TBD".	-	Normally Closed
Platform Level Angle Sensors (2) - The gravity sensor is located on the Platform/Jib Support and is used to measure	Gravity Based PWM Output (100Hz)	5 - 95% duty cycle
platform angle with respect to gravity and providing redundancy check for the protractor. The protractor is used for velocity control of platform level (and possibly for platform leveling of retrieval modes)	5V protractor hall effect PWM Output (100Hz)	5 - 95% duty cycle
Steer Angle Sensors (4) - These sensors are used to measure wheel steer angles. These rotary sensors are mounted on top of each king pin	5V hall effect sensor Analog Output	0.5 - 4.5 Volts
Axle extend/retract Sensors (4) - These sensors are used to measure axle rotation between the retracted and extended positions. Each sensor is mounted between the frame and an axle	Linear Resistive 5V Analog Output	0.1-4.9 Volts
Brake/2 Speed Pressure Check (1) - This pressure sensor monitors that there is no pressure present when the associated valves are not activated	5V Pressure switch	Normally Open
Chassis Tilt Sensors (Externally mounted) (1) — These sensors are the primary tilt sensors and measure the tilted angle of the turntable relative to gravity. They are integrated into the same mechanical body	Gravity Based CANbus Output	CAN Msg
Internal UGM Tilt Sensor(2) - used for redundancy check against the external tilt sensor	Analog	
Warm Up Switch (1) — This switch monitors the temperature of the main control valve. This is used the same as the 1250AJP	Bi-metallic strip, low-side input switch	Normally Open

Sensor Position/Function	Sensing Method	Raw Output
ressure Reduction Check – (1) - It is used to monitor pressure of the lower pressure functions of the machine), to ssure that they are within the regulated range. Pressure range 0-7500PSI	5V analog	0.5 - 4.5 Volts
ower Lift Cylinder (rod side) Pressure Transducer (2) - These pressure transducers are located on the port block of the ower boom lift cylinder. These are used for the diagnostics (cut piston seal) of the lift cylinder and used in the calcula- ion for determining lift cylinder force for the retrieval system. Pressure range 0-7500PSI	5V analog	0.5 - 4.5 Volts 0.5 - 4.5 Volts
		xS
Aain Lift Cylinder (rod-side) Pressure Transducer (1) - This pressure transducer is located on the port block of the Main 10 om lift cylinder. This is used for the diagnostics of the lift cylinder. Pressure range 0-7500PSI.	5Vanalog	0.5 - 4.5 Volts
Nain boom Broken Cable prox switch (2). One to detect broken extend ropes. One to detect broken retract ropes	Proximity Switch	Normally Open
ower Tele Cylinder Pressure Transducer (1) - This pressure transducer is located on the port block of the Tower boom ele cylinder. This is used for the diagnostics of the tele cylinder. Pressure range 0-7500PSI.	5Vanalog	0.5 - 4.5 Volts
ib in line limit switch (2) - Used like the 1250AJP, dual capacity mode. Both Signal lines are wired for redundancy	Plunger Switch	Normally Closed
heck.	0	Normally Open
ib stow limit switch (1) Used like the 1250AJP	Plunger Switch	Normally Closed
rive Orientation Sensing Prox switch. This is integrated in the hydraulic swivel/collector ring. Same as 1250AJP.	Non contact proximity switch	Inline: Closed
ower Lift Cylinder (Barrel side) Pressure Transducer (2) - These pressure transducers are located on the port block of he Tower boom lift cylinder. These are used in the calculation for determining lift cylinder force for the retrieval sys-	5V analog	0.5 - 4.5 Volts
em. Pressure range 0-7500PSI		0.5 - 4.5 Volts
latform Dump Valve Pressure Switch	Pressure Switch	Normally Open

Table 6-5. Boom Sensor Positions/Functions

Sensor #8 - Main Boom Transport Length Switch (1)

This proximity switch is used to indicate main boom retracted position for transport. It is located in the left rear of main boom section #1and is mounted so that when the boom is in the transport position it senses the presence of a target (main boom section #2). This switch senses no target when the main boom has extended beyond approximately 370mm (cylinder stroke of approximately 185mm) from the fully stowed position. This switch provides a normally open output and a normally closed output.

TRANSPORT LENGTH SWITCH INSTALLATION

- 1. Remove the jam nuts from the switch.
- **2.** Thread the proximity sensor into the main base boom until it softly bottoms out on the main mid boom.
- **3.** Turn the proximity switch out 4 ± 0.25 turns.
- 4. Torque the jam nut to 38 Nm.

Sensor #9 - Jib Stow Switch (1)

This switch is used by the Jib Stow system and is located on the rotary assembly. It is a mechanical limit switch.

Sensor #10 - Dual Capacity Jib Position Switch (1)

This switch is used by the Dual Capacity system and is located on the rotary assembly. It is a mechanical limit switch.

Sensor #11 - Platform Level Protractor Sensor (1)

This is a rotary sensor and is used by the Electronic Platform Level system. It measures platform angle relative to the main boom and is used primarily for velocity control of platform leveling. It is a rotary sensor mounted on the platform end of main boom section #3.

Sensor #12 - Platform Level Angle Gravity Sensor (1)

This sensor is located on the jib pivot weldment and is used to measure platform angle with respect to gravity. This sensor is used for positional control of platform leveling.

Sensor #13 - Barrel End Pressure Transducer (Tower Boom Lift cylinder) (2)

These transducers are used in conjunction with the rod end pressure transducers to derive forces on the tower boom lift cylinder for the electrical retrieval system and are located on the tower boom lift cylinder port block.

Sensor #14 - Rod End Pressure Transducer (Tower Boom Lift Cylinder) (2)

These transducers are used in conjunction with the barrel end pressure transducers to derive forces on the tower boom lift cylinder for the electrical retrieval system. These sensors will also be used for tower boom control and for cylinder diagnostics. These sensors are located on the tower boom lift cylinder port block.

Sensor #15 - Rod End Pressure Transducer (Main Boom Lift Cylinder) (1)

This transducer is used for main lift cylinder diagnostics. It is located in the main lift cylinder port block.

Sensor #16 - Steer Angle Sensor (4)

These sensors are used to measure wheel steer angles. These rotary sensors are mounted on top of each king pin.

Sensor #17 - Axle extend/retract Sensor (4)

These sensors are used to measure axle rotation between the retracted and extended positions. Each sensor is mounted between the frame and an axle.

Sensor #18 - Brake-Two Speed Pressure Sensor (1)

This pressure switch monitors that there is no pressure present when the associated valves are not activated.(Review terminology)

Sensor #19 - Chassis Tilt Sensor (Externally mounted) (1)

This sensor is the primary tilt sensor and measures the tilted angle of the turntable relative to gravity. It is mounted on a bracket on the right side of the turntable above the batteries. It is a dual axis output sensor in a single body.

Sensor #20 - Tilt Sensor (2)

These sensors are integral to the UGM. These sensors are secondary tilt sensors and measure the tilted angle of the chassis relative to gravity. They are used to check plausibility of the primary chassis tilt sensor reading (See Sensor #19).

Sensor #21 - Warm up Switch (1)

This switch is located on return oil manifold located beside the main control valve and is used by the Hydraulic System Warm Up.

Sensor #22 - Main Valve Pressure Transducer (1)

This pressure transducer is located on the main control valve. It is used to monitor pressure of the lower pressure functions of the machine (all control valve functions except main lift, tower lift and tower telescope), to assure that they are within the regulated range.

Sensor #23 - Tower Tele Cylinder rod side Pressure Transducer (1)

This pressure transducer is located on the port block of the tower boom tower tele cylinder. This transducer is used for diagnostics and improved flow control.

Sensor #24 - Broken Wire Rope Service Indicator Sensor

The Broken Wire Rope Indicator System shows the operator one of the ropes has failed or needs adjustment. This system uses two proximity sensors (One for extend ropes and one for retract ropes) to detect excessive movement of the sensed rope as would be expected with a rope failure. A broken rope detection results in illuminating the Cable Break indicator on the platform control panel.

INSTALLATION

- To avoid damage to the sensor, install and adjust after assembling the switch block, compression spring, and tensioning the wire ropes.
- **2.** Remove the jam nuts from the proximity sensor.
- Thread the sensor in till it makes contacts the adjuster block.
- 4. Turn the proximity sensor out 1/8 to 1/2 turn.
- 5. Torque the jam nut against the housing to 24 Nm.

Sensor #25 - Platform Dump Valve Pressure Switch

This pressure switch is located on the platform port block. Under regular operation, the platform dump valve will close when an operator function is demanded. The control system uses this pressure switch to detect a malfunctioning platform dump valve

6.10 CALIBRATION PROCEDURES

This machine incorporates a variety of sensors and a high degree of function interaction. For safety and proper machine functionality, the calibration procedures must be repeated for any control module replacement, system calibration related fault, or removal or replacement of any sensors, valves, coils, motors, or pumps. The chart below lists the calibrations required and potential reasons for re-calibration. All calibration procedures are menu driven through the use of the standard analyzer. With the exception of steering calibration, no external tools are required to complete the calibration procedures. The user is prompted to exercise the machine in a specific order to use the machines physical properties to consistently establish sensor response and the interaction of valves, pumps, and motors. Steering calibration also uses the analyzer and is performed on one side of the machine at a time requiring the use of a string or other means to determine when the tires are in line with each other. All calibrations are accessed by connecting the analyzer into the control system at the appropriate location.

At various steps during calibration if a sensor is not meeting the required range the operator is allotted a retry attempt before failure of the calibration procedure.

Table 6-6. Required Calibrations

	Calibration Procedure	Reasons for Re-Calibration			
	Steering Calibration	Ground module replacement Chassis module replacement			
		Steer sensor removal or replacement Persistent wheel misalignment			
Drive Calibration		Ground module replacement BLAM module replacement			
		Drive pump/coil replacement Drive pulls to one side Drive lugs engine			
		Poor slow speed control			
	Main Boom Lift Up and down Flow Control Cali- bration	Ground module replacement Lift proportional valve/coil replacement Erratic controlled arc operation			
		Erratic controlled boom angle operation Pressure transducer replacement for lift down			
	Main Boom Lift Down Enable	Ground module replacement Main lift proportional valve replacement Erratic controlled arc operation Erratic controlled boom angle operation			
	Main boom Lift Down Auxiliary Enable	Ground module replacement Main lift proportional valve replacement Erratic controlled arc operation Erratic controlled boom angle operation			
	Boom Telescope In and Out Flow Control	Ground module replacement Telescope proportional valve replacement Erratic controlled arc operation Erratic controlled boom angle operation			

Table 6-6. Required Calibrations

Calibration Procedure	Reasons for Re-Calibration
Tower Lift Up and Down Flow Control	Ground module replacement Telescope or lift proportional valve replacement Erratic tower path operation Pressure transducer replacement for tower down Tower consistently encroaches envelope
Tower Lift Down Enable	Ground module replacement Telescope or lift proportional valve replacement Erratic tower path operation Tower consistently encroaches envelope
Tower Telescope In and Out Flow control	Ground module replacement Telescope or lift proportional valve replacement Erratic tower path operation Pressure transducer replacement for tele in Tower consistently encroaches envelope
Tower Telescope In Enable	Ground module replacement Telescope or lift proportional valve replacement Erratic tower path operation Tower consistently encroaches envelope
Chassis Tilt Calibration	Ground module removal or replacement Constant disagreement faults Tilt indication inaccuracy External tilt sensor removal or replacement
Boom Sensors Calibra- tion	Ground module removal or replacement BLAM module removal or replacement Tower and Main Boom angle sensor removal or replacement Tower and Main Boom length sensor removal or replacement Tower and Main Boom angle sensor calibration fault Tower and Main Boom length sensor calibration fault Boom control system inaccuracies Platform level sensor replacement Prox switch replacement
Platform Load Sensing Calibration	Load cell removal or replacement Load control inaccuracy
Axle Extend/Retract Sensors Calibration	Ground module replacement Axle extend/retract sensor removal or replacement Axle extend out of range fault
Platform level propor- tional valve	Ground module replacement Level up and/or down coil/valve replacement Persistent leveling timeout

6.11 AXLE CALIBRATION

The axle angle sensors need to be calibrated to ensure that the axle angle can be accurately calculated. The machine must be in transport position to perform an axle calibration. If the steer sensors have not been calibrated, they will be calibrated as part of the axle calibration procedure.

Axle Calibration is available under AXLE SWING under the CAL-IBRATIONS menu using the analyzer.

When performing a calibration, the first prompt will be to RETRACT AXLES.

The analyzer will prompt to move to the next sequence once the axle retract conditions are met and retract values are stored in the Control System.

If the steer sensors have not been calibrated when an axle calibration is attempted, the system shall require the steer sensors be calibrated. If this is the case, the analyzer prompt shall automatically redirect to the steer sensor calibration section after the axle retract position is calibrated (Refer to steer sensor calibration). If the steer sensors have been calibrated, this step shall be skipped.

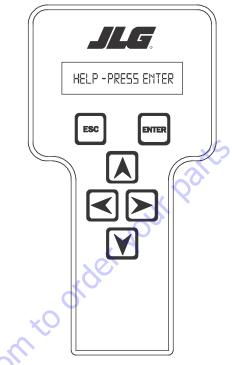
The analyzer will prompt to EXTEND AXLES.

The analyzer shall prompt to move after the extend conditions are met and extend values are stored in the Control System. The axle calibration is complete at this point.

6.12 CALIBRATING STEER

NOTE: The Steer menu will not appear on the analyzer until the axles are fully retracted.

When calibrating steering, each individual wheel must be calibrated in order to make the tire and wheel parallel with the frame. Two methods to help ensure proper calibration are the use of a carpenter's square to square the spindle to the axle or aligning the two wheels on one side using a stretched string.


- **1.** Position the Platform/Ground select switch to the Platform position.
- **2.** Plug the analyzer into the connector at the base of the platform control box.

3. Pull out the Emergency Stop switch and Start the engine.

4. The analyzer screen should read:

- 5. Use the arrow button to reach OPERATOR ACCESS. Press Enter.
- 6. Enter the Access Code, 33271.
- **7.** Use the right Arrow key to reach CALIBRATIONS. Press Enter.

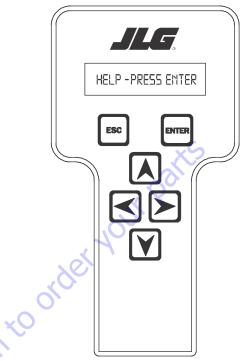
- LT STEER CRL: CALIBRATIONS: FRONT LT STEER STEER ESC ENTER ESC ENTER mtoordet 9. Press Enter. The screen will read: **11.** Press Enter again. The screen will read: STEER CAL: FRONT LT STEER: CALIBRATE? VALUE = XX ESC ENTER ESC ENTER
- **8.** Use the arrow keys to reach Steer. The screen will read:
- **10.** Press Enter. The screen will read:

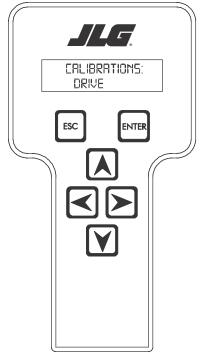
- **12.** Activate the steer control until the tire and wheel are straight in relationship with the chassis, then leave off the control. The display will read FRT LEFT = and show the numeric calibration value for that wheel.
- **13.** Press Enter. The screen will read:

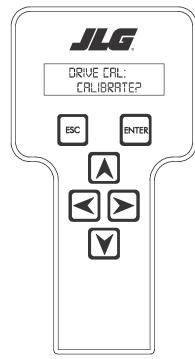
- 14. Repeat steps 10 thru 12 for left rear steer.
- **15.** Left Rear Steer Calibration will be followed by Right Forward Steer Calibration which will be followed by Right Rear Steer Calibration.
- **16.** After completing all the Steer Calibrations, press ESC twice to go back to CALIBRATIONS.

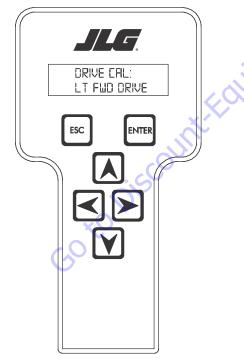
Goto Discount-Equipment conto order vour parts

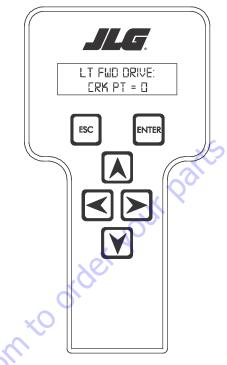
6.13 CALIBRATING DRIVE

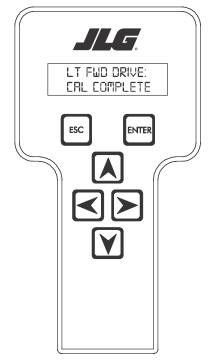

- **1.** Position the Platform/Ground select switch to the Platform position.
- **2.** Plug the analyzer into the connector at the base of the platform control box.

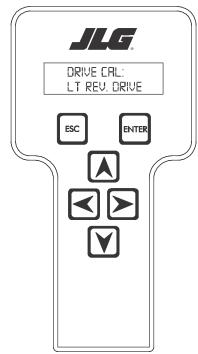

3. Pull out the Emergency Stop switch and Start the engine.


4. The analyzer screen should read:


- 5. Use the arrow button to reach ga. Press Enter.
- 6. Enter the Access Code, 33271.
- **7.** Use the right Arrow key to reach CALIBRATIONS. Press Enter.
- 8. Use the arrow keys to reach DRIVE.


9. Press Enter. The screen will read:


10. Press Enter again. The screen will read:


11. Press Enter again. The screen will read:

- 12. Activate the Drive Joystick forward full stroke until the machine just begins to move, then leave off the joystick immediately. The display will read CRK PT = and show the numeric crack point value.
- **13.** Press Enter. The number displayed will be the value that the crack point is set to. The screen will show:

14. Press Enter. The screen will read:

15. Repeat steps 10 thru 12 for left reverse drive.

GO tO DISCOUNT

- **16.** Left Reverse Drive Calibration will be followed by Right Forward Drive Calibration which will be followed by Right Reverse Calibration.
- **17.** After completing all the Drive Calibrations, press ESC twice to go back to CALIBRATIONS.

6.14 CALIBRATING TILT SENSOR

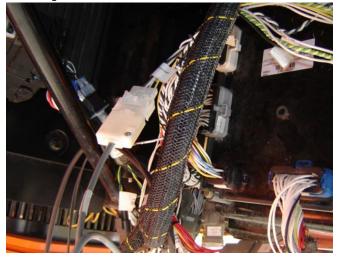
NOTICE

A NEW TILT MODULE WILL ACT AS IF IT IS TILTED ALL OF THE TIME UNTIL THE FOLLOWING PROCEDURE IS PERFORMED.

DO NOT CALIBRATE THE LEVEL SENSOR EXCEPT ON A LEVEL SURFACE.

1. Use the following procedure to calibrate the tilt sensor.

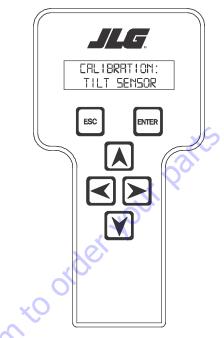
Before the tilt sensor can be calibrated, the following conditions must be met:


- a. Steering previously calibrated.
- b. Axles extended.
- c. Wheels straight.

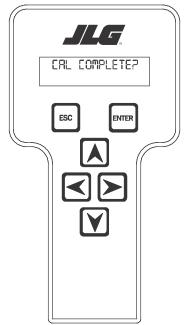
f.

- d. Turntable centered.
- e. Boom fully retracted.
 - Boom angle is less than 45°.
- g. Machine on firm, level ground.
- **2.** Position the Platform/Ground select switch to the Ground position.

3. Plug the analyzer into the connector coming from the ground control module.



- **4.** Pull out the Emergency Stop switch and start the engine.
- **5.** The analyzer screen should read:



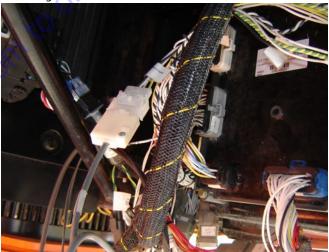
- 6. Use the arrow button to reach OPERATOR ACCESS. Press Enter.
- 7. Enter the Access Code, 33271.
- **8.** Use the right Arrow key to reach CALIBRATIONS. Press Enter.

9. Use the arrow keys to reach the TILT SENSOR. The screen should read:

- 10. Press ENTER.
- 1. When prompted, swing turntable 180° to opposite end of chassis.
- 12. Press ENTER. The screen should read:

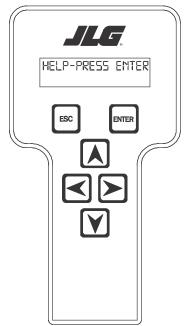
- **13.** Upon completing swing calibration, swing turntable 180° back to the stowed position.
- 14. Press ESC twice to go back to CALIBRATIONS.

6.15 CALIBRATING THE BOOM SENSORS

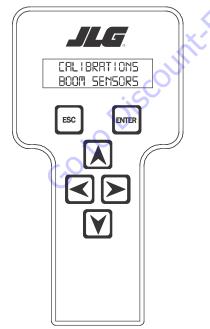

Use the following step-by-step procedure to calibrate the boom sensors.

- **NOTE:** If the Enter button is pressed and the calibration procedure does not move on to the next step, this signifies a failed calibration step. There are two additional attempts to complete a failed calibration step. After the third attempt, the JLG Control System assumes there is a sensor issue and will display the failed calibration fault.
 - Before the boom sensors can be calibrated, the follow-1. ing conditions must be met:
 - a. Steering, axle, drive, and hydraulic valve crack points completed, and tilt previously calibrated
 - b. Axles Extended
 - c. Wheels Straight
 - d. Platform Unloaded
 - e. Jib Horizontal
 - f. Jib Swing Centered
 - g. Platform Level
 - h. Platform Centered
 - i. Turntable Centered
 - j. Boom Fully Retracted
 - k. Level Ground (within 1.5°)
 - Goto Discount-Fauino I. LSS calibrated (if equipped)

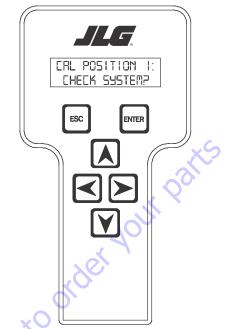
Position the Platform/Ground select switch to the 2. Ground position.

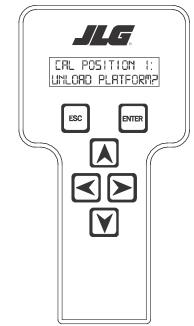


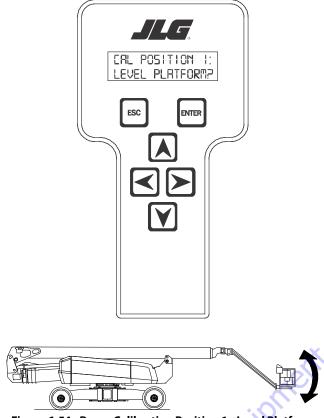
3. Plug the analyzer into the connector coming from the ground control module.



Pull out the Emergency Stop switch and start the 4. engine.


5. The analyzer screen should read:


- **6.** Use the arrow button to reach OPERATOR ACCESS. Press Enter.
- 7. Enter the Access Code, 33271.
- **8.** Use the right Arrow key to reach CALIBRATIONS. Press Enter.
- **9.** Use the arrow keys to reach BOOM SENSORS. The screen should read:


10. Press Enter. The screen will read:

11. After verifying all the conditions listed in step 1 are met, Press Enter. The screen will read:

12. After verifying all load (personnel or material) is removed from the platform, Press Enter. The screen will read:

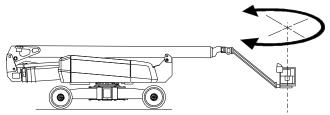


Figure 6-55. Boom Calibration Position 1 - Center Platform

14. Center the platform. After visually verifying the platform is centered, Press Enter. The screen will read:

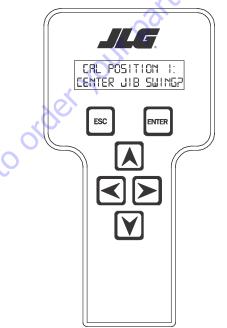
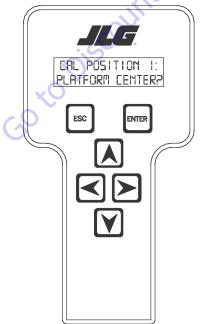



Figure 6-54. Boom Calibration Position 1 - Level Platform

13. Raise the platform to level. After visually verifying that the platform is level, Press Enter. The screen will read:

NOTE: If this step does not activate, it signifies the jib is already meeting the calibration requirement to be centered and the step is disabled.

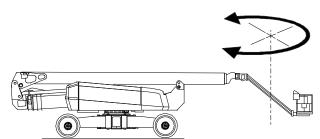
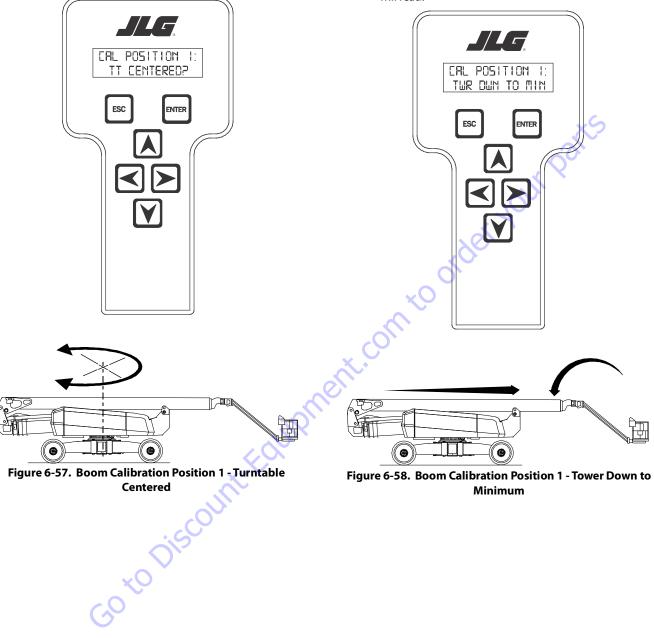
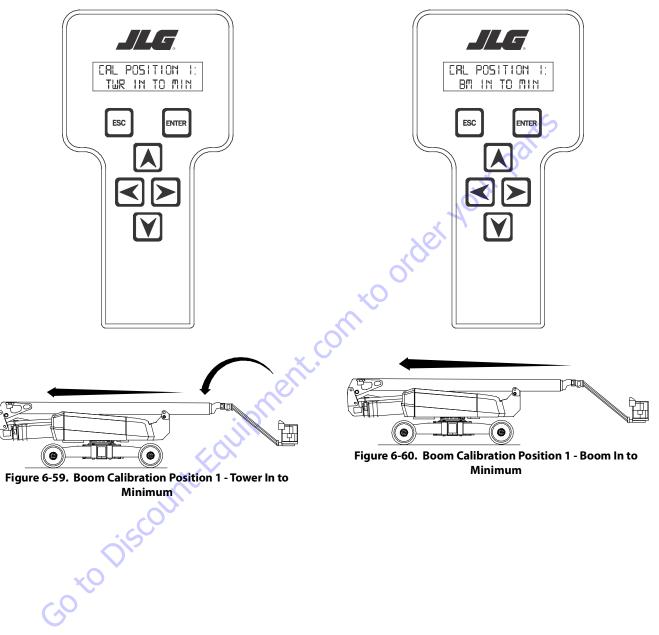
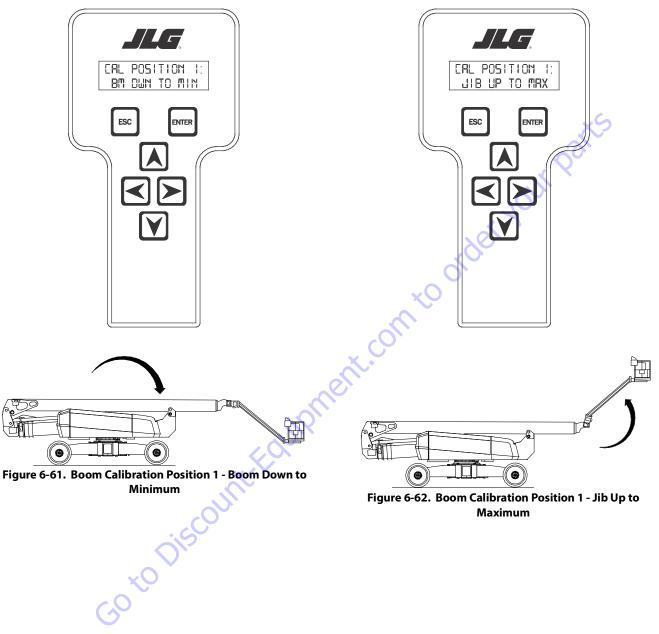
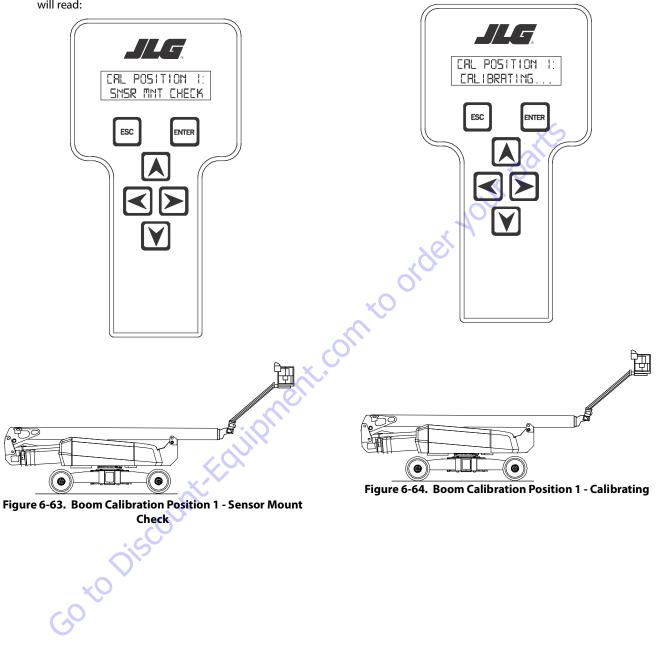
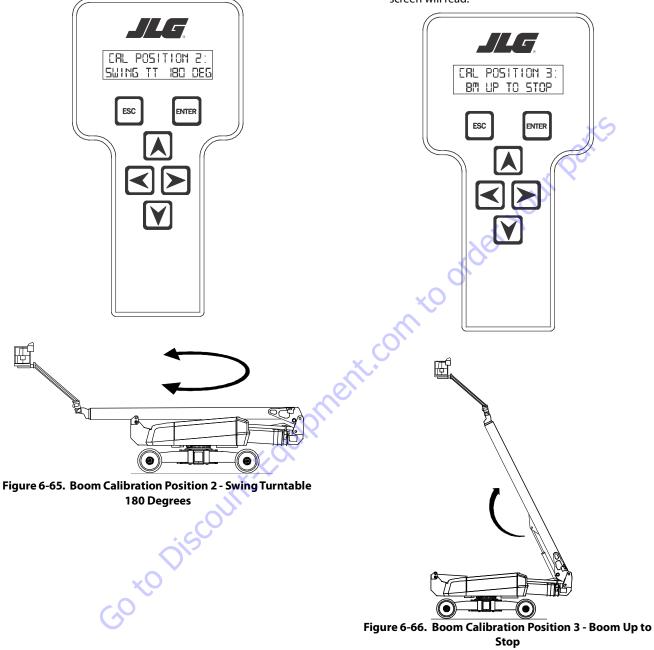
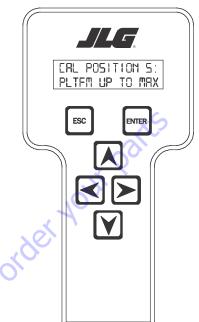




Figure 6-56. Boom Calibration Position 1 - Center Jib


- **15.** Center the jib. After visually verifying the jib is centered, Press Enter. The screen will read:
- **16.** Center the turntable. After visually verifying the turntable is centered with the chassis, Press Enter. The screen will read:

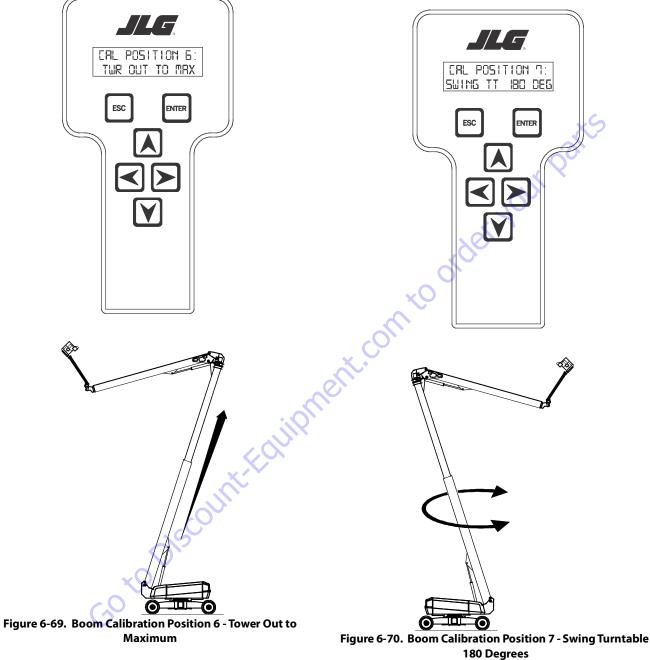

- **17.** Lower the tower boom down to the rest. After visually verifying the tower is lowered, press Enter. The screen will read:
- **18.** Fully retract the tower boom. After visually verifying the tower boom is fully retracted, press Enter. The screen will read:


- **19.** Fully retract the main boom. After visually verifying the main boom is fully retracted, press Enter. The screen will read:
- **20.** Fully lower the main boom to the boom rest. After visually verifying the main boom is fully retracted, press Enter. The screen will read:


- **21.** Fully raise the jib to maximum elevation. After visually verifying the jib is fully elevated, press Enter. The screen will read:
- **22.** When the sensor check is complete, press Enter. The screen should read;

- **23.** After making sure the machine is in Calibration Position 1, press Enter. The screen will read:
- **24.** Swing the turntable 180 degrees for Calibration Position 2. When the machine is in that position, press Enter. The screen will read:

- **25.** Raise the main boom up till it stops. When the boom is in that position, press Enter. The screen will read:
- Ĺ ERL POSITION 4: TWR LIP TO MAX ESC NTER Figure 6-67. Boom Calibration Position 4 - Tower Up to Maximum
- **26.** Raise the tower boom up to max elevation. When the tower boom is in that position, press Enter. The screen will read:



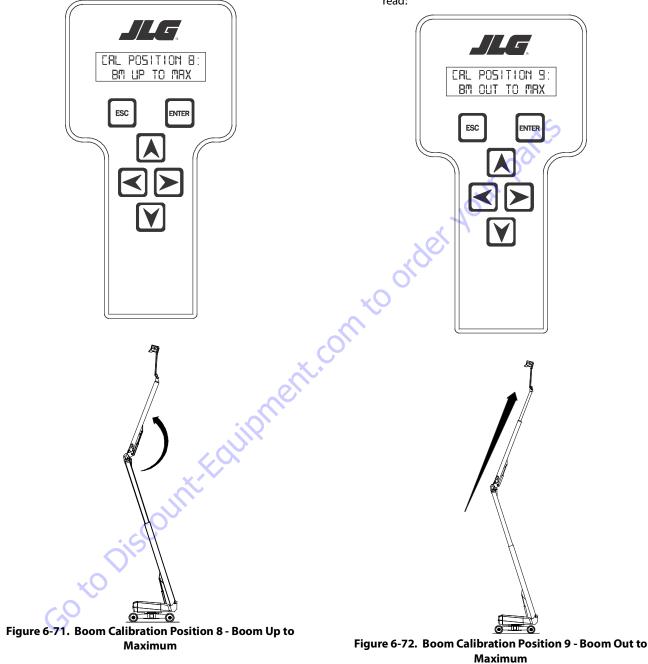
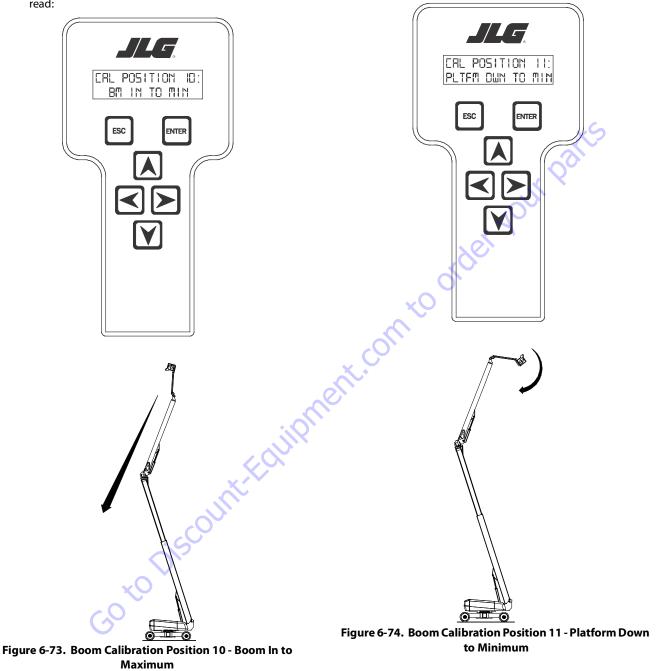
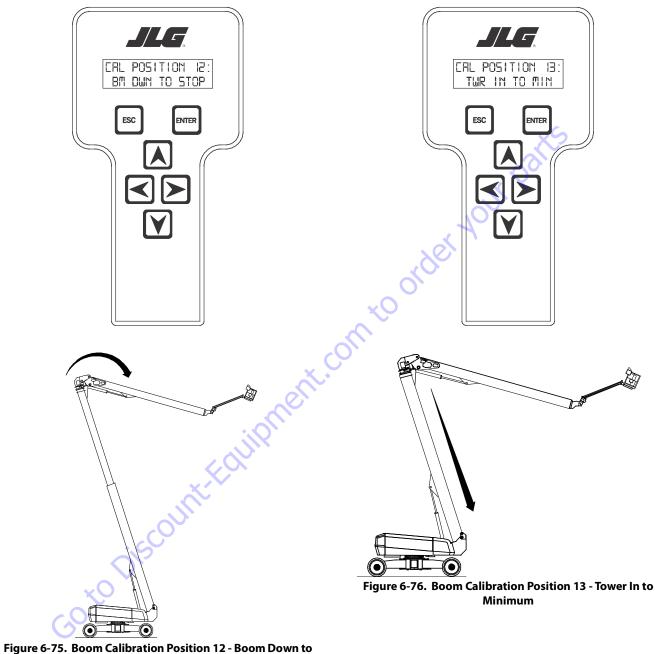

NOTE: If calibration fails at this step and the tower is still at max angle, follow the normal boom recovery procedure. Once the point to lift the tower back to its' rest is reached, the Tower Cylinder Angle Sensor Not Detecting Change fault may appear which will cut boom functions out, throwing the BCS Multiple Retrieval Fault. Cycle power and keep trying until the tower starts moving and continue with recovery.

Figure 6-68. Boom Calibration Position 5 - Platform Up to Maximum


- **27.** Raise the platform up to max elevation. When the platform is in that position, press Enter. The screen will read:
- **28.** Extend the tower boom out the whole way. When the tower boom is in that position, press Enter. The screen will read:



- **29.** Swing the turntable 180 degrees. When the turntable is in that position, press Enter. The screen will read:
- **30.** Raise the main boom up to max elevation. When the boom is in that position, press Enter. The screen will read:

- **31.** Extend the main boom out to full extension. When the boom is in that position, press Enter. The screen will read:
- **32.** Fully retract the main boom. When the boom is fully retracted, press Enter. The screen will read:

33. Fully lower platform level. When the platform is in that position, press Enter. The screen will read:

Stop

34. Lower the main boom till it stops. When the boom is in this position, press Enter. The screen will read:

- **35.** Retract the tower boom in the whole way. When the boom is in that position, press Enter. The screen will read:
- **36.** Lower the tower boom down to the rest. When the boom is in that position, press Enter. The screen will read:

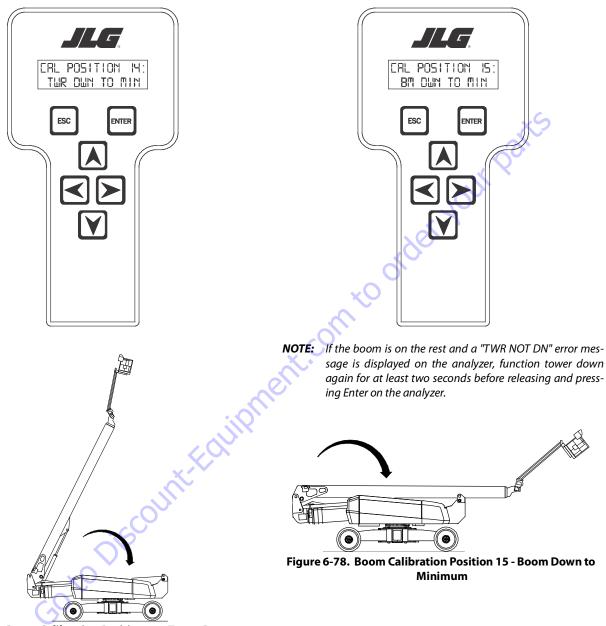
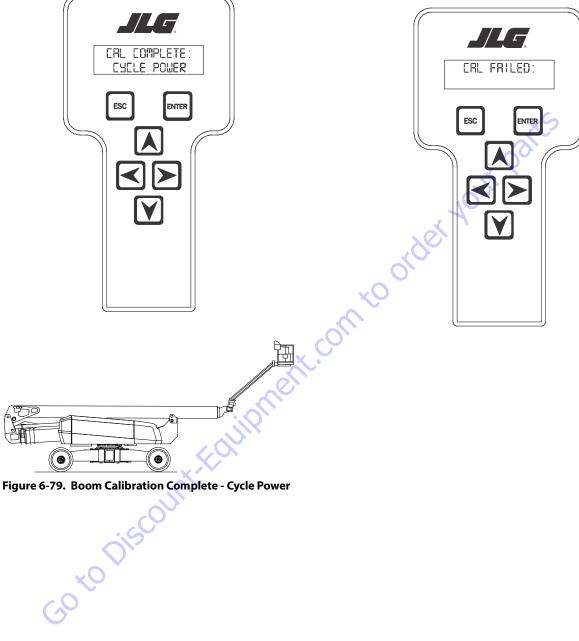



Figure 6-77. Boom Calibration Position 14 - Tower Down to Minimum

- **37.** Lower the main boom down to the rest. When the boom is in that position, press Enter. The screen will read:
- **38.** Calibration is complete and the Emergency Stop must be cycled for the calibration to take effect. If the calibration fails, the screen will read:

6.16 BOOM SENSOR CALIBRATION FAULTS

Calibration Position		Fault Text	Extended Fault Text	Fault Trigger
CAL POSITION 1	CHECK SYSTEM?	SEE HELP MENU	See Analyzer Help Menu	Fault will be active in the HELP menu on the analyzer
		REMOVEDONGLE	Remove Dongle	The UGM sees the CAN Dongle on the CANbus and is reporting the Dongle DTC to be active, remove CAN dongle
		LEVEL MACHINE	Level Machine	Chassis Tilt > 1.5°
		EXTEND AXLES	Extend Axles	Verifies axles are fully deployed
		CENTERWHEELS	Center Wheels	Wheels must be less than ± 10° turned
	UNLOAD PLATFORM?	PLTFMNOTEMPTY	Platform Not Empty	If LSS is enabled the platform load must be less than 100lbs
	LEVEL PLATFORM?	N/A	N/A	N/A
	PLATFORM CENTER?	N/A	N/A	N/A
	CENTER JIB SWG?	JIB SW FLT	Jib Switch Fault	Jib is not reading inline. The Inline Switch or the Stowed switch is reporting the jib is swung.
	TT CENTERED?	ALIGNTURNTA- BLE	Align Turntable	The DOS Switch is reporting the turntable is not inline
		TT SW FLT	Turn Table Switch Fault	The DOS Switch is reporting the turntable is not inline
	TWRDWNTOMIN	TWR CYL ANG FLT	Tower Cylinder Angle Fault	Looks at tower cylinder angle sensor 1 to be reporting below 23% Duty Cycle if uncalibrated or tower angle to be below 5 degrees if the tower cylinder angle sensor is not reporting a fault. If there is a faulted tower cylinder angle sensor then the max tower angle gravity sensor angle is used and the chassis tilt y axis is added and that angle has to be below 0 degrees.
	TWRINTOMIN	TWR NOT DN	Tower Not Down	Looks at the position of the tower lift angle, using tower cylinder angle sensors, from previous step to end of the current step, if it changes more than the standard tolerance the tower was not down
		TWRLENPRXFLT	Tower Length Transport Proximity Sensor Fault	Looks at the max tower length sensor value and verifies it is less than the tower length retracted threshold plus 3.2 inches if the tower length sensors are not reporting a fault. If there is a tower length sensor fault then the tower length proximity sensor is used and the NC = OPEN and NO = CLOSED. Refer to "Cal Lmts, Thrshlds, Other Info" tab for expected values and tolerances
	BMINTOMIN	TWRNOTIN	Tower Not In	Looks at the position of the tower telescope length, using tower length sensors, from previous step to end of the current step, if it changes more than the standard tolerance the tower was not in
		BM LEN PRX FLT	Boom Length Transport Proximity Sensor Fault	Looks at the max boom length sensor value and verifies it is less than the boom length retracted threshold plus 3.2 inches if the boom length sensors are not reporting a fault. If there is a boom length sensor fault then the boom length proximity sensor is used and the NC = OPEN and NO = CLOSED. Refer to "Cal Lmts, Thrshlds, Other Info" tab for expected values and tolerances
	BM DWN TO MIN	BMNOTIN	Boom Not In	Looks at the position of the boom telescope length, using boom length sensors, from previous step to end of the current step, if it changes more than the standard tolerance the boom was not in
		BM ANG PRX FLT	Boom Angle Transport Proximity Sensor Fault	Looks at max boom angle sensor value and verifies it is less than 0 degrees if the boom angle protractors are not reporting a fault and DTC 8486 is not active. If there is a boom angle protract tor fault or DTC 8486 is active then the max boom angle sensor value is verified against the calibrated boom angle transport trip point. If boom sensors have not been calibrated then the boom angle proximity sensor is used and the NC = OPEN and NO = CLOSED. Refer to "Cal Lmts, Thrshlds, Other Info" tab for expected values and tolerances
	JIB UP TO MAX	BM NOT DN	Boom Not Down	Looks at the position of the boom lift angle, using the boom angle protractor sensors, from pre- vious step to end of the current step, if it changes more than the standard tolerance the tower was not down
	SNSR MNT CHECK	CYL ANG MNT FLT	Tower Cylinder Angle Mounting Fault	All these faults take the raw nominal minimum reading and verify that the sensor is reporting within plus/minus the mounting check tolerance. Refer to "Cal Lmts, Thrshlds, Other Info" tab for expected values and tolerances

Table 6-7. Boom Sensor Calibration Faults

Calibration Position		Fault Text	Extended Fault Text	Fault Trigger
		TWR ANG MNT FLT	Tower Angle Gravity Mounting Fault	
		TWR LEN MNT FLT	Tower Length Mounting Fault	
		BM ANG MNT FLT	Boom Angle Mounting Fault	
		BM LEN MNT FLT	Boom Length Mounting Fault	xS
		PLT ANG MNT FLT	Platform Angle Mount- ing Fault	Oal
	CALIBRATING	N/A	N/A	N/A
CAL POSITION 2	SWING TT 180 DEG	DRIVE ORNT SW	Drive Orientation Switch failure	The DOS Switch is still reporting the machine inline.
		TWR ANG1 FAULT	Tower Angle Gravity Sen- sor 1 Fault	The lower calibration angle for sensor 1 is outside the allowable raw nominal minimum value plus/minus the standard tolerance. Refer to "Cal Lmts, Thrshlds, Other Info" tab for expected values and tolerances
		TWR ANG2 FAULT	Tower Angle Gravity Sen- sor 2 Fault	The lower calibration angle for sensor 2 is outside the allowable raw nominal minimum value plus/minus the standard tolerance. Refer to "Cal Lmts, Thrshlds, Other Info" tab for expected values and tolerances
		TWR ANG DISAGR	Tower Angle Gravity Dis- agreement	Verifies that the ground slope detected by the tower angle sensors is less than 0.9 % duty cycle (less than 1 degree). This ground slope verification is used when calibrating the upper limit of the tower angle
CAL POSITION 3	BM UP TO STOP	BLRDPRSHGH	Boom Lift Rod Pressure High	The Boom Lift Rod side pressure transducer detected a pressure above the alotted seal pressure threshold. Refer to "Cal Lmts, Thrshlds, Other Info" tab for thresholds
		BM ANG PRX FLT	Boom Angle Transport Proximity Sensor Fault	Compares the trip point position of the Boom Angle Transport Proximity sensor compaired to Boom Angle Protractor Sensor 2 to the expected value provided by design. Refer to "Cal Lmts, Thrshlds, Other Info" tab for Limit
CAL POSITION 4	TWR UP TO MAX	TL RD PRS HGH	Tower Lift Rod Pressure High	One of the Tower Lift Rod side pressure transducers detected a pressure above the alotted seal pressure threshold. Refer to "Cal Lmts, Thrshlds, Other Info" tab for thresholds
		TWR ANG1 FAULT	Tower Angle Gravity Sen- sor 1 Fault	The higher calibration angle for tower angle gravity sensor 1 is outside the allowable raw nom- inal maximum value plus/minus the standard tolerance. Refer to "Cal Lmts, Thrshlds, Other Info" tab for expected values and tolerances
	DIS	TWR ANG2 FAULT	Tower Angle Gravity Sen- sor 2 Fault	The higher calibration angle for tower angle gravity sensor 2 is outside the allowable raw nom- inal maximum value plus/minus the standard tolerance. Refer to "Cal Lmts, Thrshlds, Other Info" tab for expected values and tolerances
Ć	, co	CYL ANG FAULT	Tower Cylinder Angle Sensor Fault	The higher calibration angle for the tower cylinder angle sensor is reporting outside the raw nominal maximum reading plus/minus the standard tolerance. Refer to "Cal Lmts, Thrshlds, Other Info" tab for expected values and tolerances
CAL POSITION 5	PLTFM UP TO MAX	TL RD PRS HGH	Tower Lift Rod Pressure High	One of the Tower Lift Rod side pressure transducers detected a pressure above the alotted seal pressure threshold. Refer to "Cal Lmts, Thrshlds, Other Info" tab for thresholds
		TWR NOT UP	Tower Not Up	Looks at the position of the tower cylinder angle, using tower cylinder angle sensors, from pre- vious step to end of the current step, if it changes more than the standard tolerance the tower was not up
		PLTFM ANG PR FLT	Platform Angle Protrac- tor Fault	The higher calibration angle for the platform protractor angle sensor is reporting outside the raw nominal maximum reading plus/minus the standard tolerance. Refer to "Cal Lmts, Thrsh- lds, Other Info" tab for expected values and tolerances

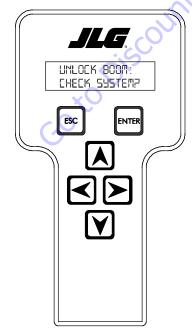
Table 6-7. Boom Sensor Calibration Faults

Calibration Position		Fault Text	Extended Fault Text	Fault Trigger		
CAL POSITION 6	TWR OUT TO MAX	TWR LEN1 FAULT	Tower Length Sensor 1 Fault	The higher calibration length for tower length sensor 1 is outside the allowable raw nominal maximum value plus/minus the standard tolerance. Refer to "Cal Lmts, Thrshlds, Other Info" tab for expected values and tolerances		
		TWR LEN2 FAULT	Tower Length Sensor 2 Fault	The higher calibration length for tower length sensor 2 is outside the allowable raw nominal maximum value plus/minus the standard tolerance. Refer to "Cal Lmts, Thrshlds, Other Info" tab for expected values and tolerances		
		PLTFM NOT UP	Platform Not Up	Looks at the position of the platform angle, using platform angle protractor, from previous step to end of the current step, if it changes more than the standard tolerance the platform was not up		
		TWRLENPRXFLT	Tower Length Transport Proximity Sensor Fault	Compares the trip point position of the Tower Length Transport Proximity sensor to Tower Length Sensor 1 to the expected value provided by design. Refer to "Cal Lmts, Thrshlds, Other Info" tab for Limit		
		TTRDPRSHGH	Tower Telescope Pressure High	The Tower Telescope Rod side pressure transducer detected a pressure above the alotted seal pressure threshold. Refer to "Cal Lmts, Thrshlds, Other Info" tab for thresholds		
CAL POSITION 7	SWING TT 180 DEG	TWRNOTOUT	Tower Not Out	Looks at the position of the tower telescope length, using tower length sensor 1, from previous step to end of the current step, if it changes more than the standard tolerance the tower was not out		
		NO DOS SW CHG	No DOS Switch State Change	The DOS Switch is still reporting the machine swung 180 degrees out of line.		
CALPOSITION 8	BM UP TO MAX	BLRDPRSHGH	Boom Lift Rod Pressure High	The Boom Lift Rod side pressure transducer detected a pressure above the alotted seal pressure threshold. Refer to "Cal Lmts, Thrshlds, Other Info" tab for thresholds		
		TWR NOT OUT	Tower Not Out	Looks at the position of the tower telescope length, using tower length sensor 1, from previous step to end of the current step, if it changes more than the standard tolerance the tower was not out		
		BM ANG1 FLT	Boom Angle Protractor Sensor 1 Fault	The higher calibration angle for boom angle protractor sensor 1 is outside the allowable raw nominal maximum value plus/minus the standard tolerance. Refer to "Cal Lmts, Thrshlds, Other Info" tab for expected values and tolerances		
		BM ANG2 FLT	Boom Angle Protractor Sensor 2 Fault	The higher calibration angle for boom angle protractor sensor 2 is outside the allowable raw nominal maximum value plus/minus the standard tolerance. Refer to "Cal Lmts, Thrshlds, Other Info" tab for expected values and tolerances		
CAL POSITION 9	BMOUT TO MAX	BM NOT UP	Boom Not Up	Looks at the position of the boom angle, using boom angle protractor sensors, from previous step to end of the current step, if it changes more than the standard tolerance the tower was not up		
		BLRDPRSHGH	Boom Lift Rod Pressure High	The Boom Lift Rod side pressure transducer detected a pressure above the alotted seal pressure threshold. Refer to "Cal Lmts, Thrshlds, Other Info" tab for thresholds		
	CO K	BM LEN1 FLT	Boom Length Sensor 1 Fault	The higher calibration length for boom length sensor 1 is outside the allowable raw nominal maximum value plus/minus the standard tolerance. Refer to "Cal Lmts, Thrshlds, Other Info" tab for expected values and tolerances		
		BM LEN2 FLT	Boom Length Sensor 2 Fault	The higher calibration length for boom length sensor 2 is outside the allowable raw nominal maximum value plus/minus the standard tolerance. Refer to "Cal Lmts, Thrshlds, Other Info" tab for expected values and tolerances		
		BM LEN PRX FLT	Boom Length Transport Proximity Sensor Fault	Compares the trip point position of the Boom Length Transport Proximity sensor to Boom Length Sensor 1 to the expected value provided by design. Refer to "Cal Lmts, Thrshlds, Other Info" tab for Limit		
CAL POSITION 10	BMINTOMIN	BM LEN PRX FLT	Boom Length Transport Proximity Sensor Fault	Compares the calibrated trip point position of the Boom Length Transport Proximity sensor to Boom Length Sensor 1 to the expected value provided by design. Refer to "Cal Lmts, Thrshlds, Other Info" tab for Limit		
		AIRINTELE CYL	Air Trapped in Boom Telescope Cylinder	Looks at the change in boom telescope length, using boom length sensor 1, to check for trapped air in the telescope cylinder after the function has completed> Currently not active fault in the calibraiton procedure		

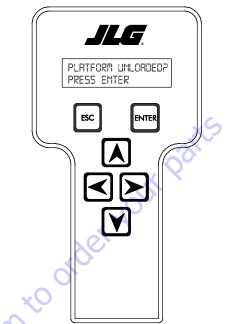
Calibrat	ion Position	Fault Text	Extended Fault Text	Fault Trigger
CAL POSITION 11	PLTFM DWN TO MIN	BMNOTIN	Boom Not In	Looks at the position of the boom telescope length, using boom length sensors, from previous step to end of the current step, if it changes more than the standard tolerance the boom was not in
		PLTFM ANG PR FLT	Platform Angle Protrac- tor Fault	The lower calibration angle for the platform protractor angle sensor is reporting outside the raw nominal minimum reading plus/minus the standard tolerance. Refer to "Cal Lmts, Thrsh- lds, Other Info" tab for expected values and tolerances
CAL POSITION 12	BM DWN TO STOP	BM ANG PRX FLT	Boom Angle Transport Proximity Sensor Fault	Compares the calibrated trip point position of the Boom Angle Transport Proximity sensor compaired to Boom Angle Protractor Sensor 2 to the expected value provided by design. Refer to "Cal Lmts, Thrshlds, Other Info" tab for Limit
		TL RD PRS HGH	Tower Lift Rod Pressure High	One of the Tower Lift Rod side pressure transducers detected a pressure above the alotted seal pressure threshold. Refer to "Cal Lmts, Thrshlds, Other Info" tab for thresholds
CALPOSITION 13	TWR IN TO MIN	TL RD PRS HGH	Tower Lift Rod Pressure High	One of the Tower Lift Rod side pressure transducers detected a pressure above the alotted seal pressure threshold. Refer to "Cal Lmts, Thrshlds, Other Info" tab for thresholds
		TWRLENPRXFLT	Tower Length Transport Proximity Sensor Fault	Compares the calibrated trip point position of the Tower Length Transport Proximity sensor to Tower Length Sensor 1 to the expected value provided by design. Refer to "Cal Lmts, Thrshlds, Other Info" tab for Limit
		AIR IN TELE CYL	Air Trapped in Tower Telescope Cylinder	Looks at the change in tower telescope length, using tower length sensor 1, to check for trapped air in the telescope cylinder after the function has completed> Currently not active fault in the calibration procedure
		TWRNOTIN	Tower Not In	Looks at the max tower length sensor value and verifies it is less than the tower length retracted threshold plus 3.2 inches if the tower length sensors are not reporting a fault. If there is a tower length sensor fault then the tower length proximity sensor is used and the NC = OPEN and NO = CLOSED. Refer to "Cal Lmts, Thrshlds, Other Info" tab for expected values and tolerances
CAL POSITION 14	TWRDWN TO MIN	TWR NOT DN	Tower Not Down	Looks at the tower cylinder angle to be less than 1.9 degrees or tower cylinder angle sensor 1 to be less than 21.5% duty cycle if uncalibrated and the tower down command has been active for at least 1 second and tower cylinder angle does not change for 0.5 seconds and tower cylinder angle sensors not reporting a fault
CAL POSITION 15	BM DWN TO MIN	BM NOT DN	Boom Not Down	Looks at the boom angle protractor sensor 2 raw duty cycle and if the sensor is reporting below 13.3 % Duty Cyle and the tower is on the rest and the Boom angle sensors are not reporting a fault or the booms are not calibrated
CAL COMPLETE:	CYCLE POWER	N/A	N/A	N/A
CAL FAILED:	<failure reason=""></failure>	N/A	N/A	N/A
	o to Dif			
Ć	50			

Table 6-7. Boom Sensor Calibration Faults

6.17 BOOM UNLOCK

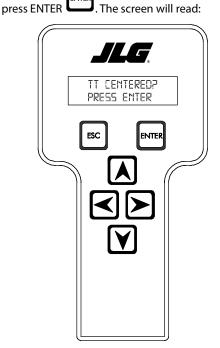

Before performing the Boom Unlock procedure, the machine must meet the following conditions.

- **1.** The following calibrations must be completed successfully:
 - a. Axle
 - b. Chassis Tilt Sensor
 - c. LSS (if enabled)
 - d. Boom Sensors
- 2. The machine must meet the following qualifications:
 - **a.** Engine Running
 - b. Ground Control Station Selected
 - c. Machine in Transport Position
 - **d.** Chassis Tilt $< \pm 1.5^{\circ}$
 - **e.** Steer Sensors $< \pm 10^{\circ}$
 - f. Axles Extended
- 3. There must be no faults on the following valves:
 - a. Park Brake Valve
- 4. There must be no faults on the following sensors:
 - a. Axle Sensors

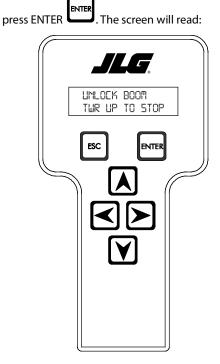

Procedure

1. Using the analyzer, scroll to the Service Modes Menu,

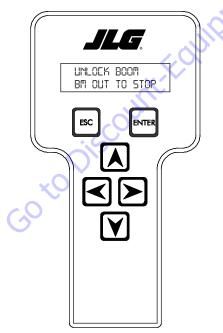
and select Unlock Boom. Press ENTER . The screen will read:

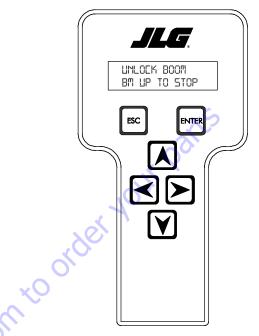


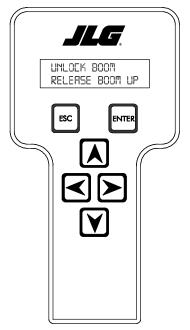
2. Press ENTER . The screen will read:

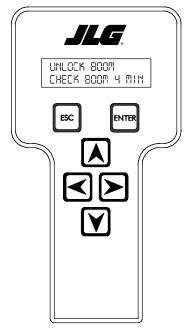


3. Check to make sure the platform is unloaded. If it is,

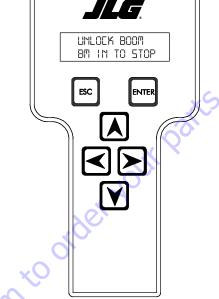

ENTER


4. Check to make sure the turntable is centered. If it is,

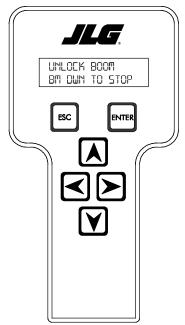

 Activate Tower Boom Up until the tower boom stops. Once the tower stops and no faults are present, the screen will read:


6. Activate Main Boom Extend until the boom stops. Once the boom stops and no faults are present, the screen will read:

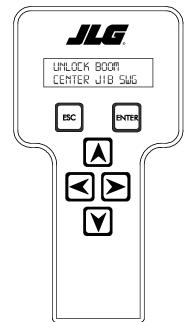
7. Activate Main Boom Lift. When the boom stops and the boom up switch is still applied, the screen will read:



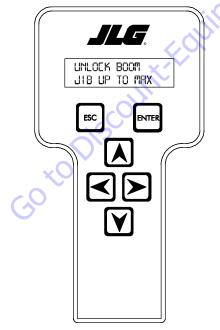
8. Release the main boom lift switch. The screen will read:



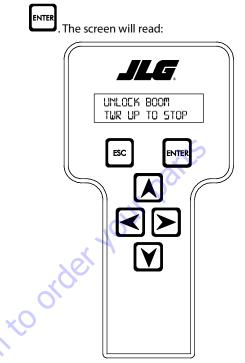
- **9.** The Control System will check the boom for movement for 4 minutes. After 4 minutes, if functioning properly, the screen will read:
 - LHECK PRSSED PRESS ENTER ESC ENTER ESC ENTER


10. Press ENTER . The screen will read:

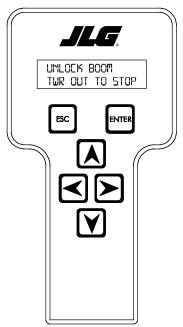
11. Activate Main Boom Retract until the boom stops. Once boom telescope stops and if no faults are present the screen will read:

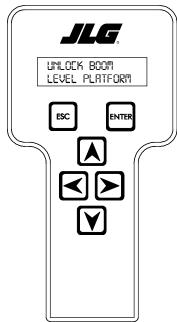


12. Activate Main Boom Lower until the boom stops. If no faults are present, the screen will read:

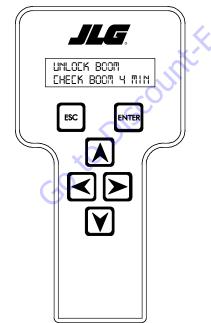


- **13.** Activate Jib Swing until the jib is centered.
- **NOTE:** Jib Swing will cut out when the system detects the jib is in line.


If no faults are present the screen will read:


14. Activate Jib Lift to maximum elevation. Press ENTER

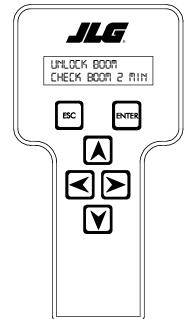
15. Activate Tower Lift Up till the boom stops. If no faults are present, the screen will read:

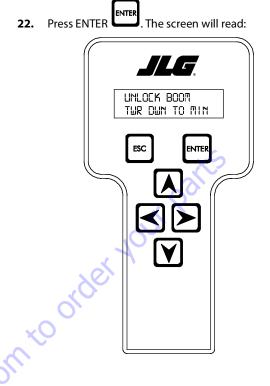


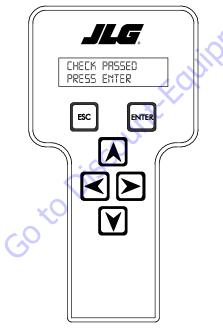
16. Activate Tower Extend till the boom stops. If no faults are present, the screen will read:

- **17.** Activate Platform Level until the platform is in a leveled position.
- **NOTE:** Platform Level will cut out when the system detects the platform is $\pm 5^{\circ}$ of level.

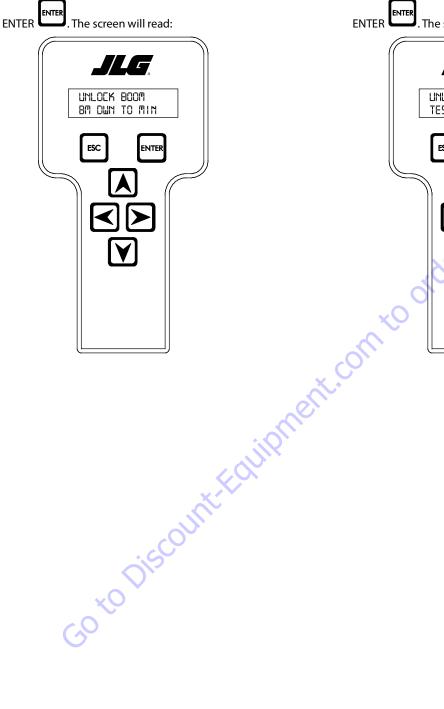
If no faults are present, the screen will read:

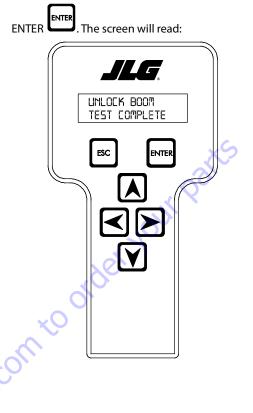



18. The Control System will check the boom for movement for 4 minutes. After 4 minutes, if functioning properly, the screen will read:


19.

20. Activate Tower Retract till the boom stops. If no faults are present, the screen will read:




21. The Control System will check the boom for movement for 2 minutes. After 2 minutes, if functioning properly, the screen will read:

23. Activate Tower Lower to minimum elevation. Press

24. Activate Main Boom Lower to minimum elevation. Press

